The purpose of this blog is the creation of an open, international, independent and free forum, where every UFO-researcher can publish the results of his/her research. The languagues, used for this blog, are Dutch, English and French.You can find the articles of a collegue by selecting his category. Each author stays resposable for the continue of his articles. As blogmaster I have the right to refuse an addition or an article, when it attacks other collegues or UFO-groupes.
Druk op onderstaande knop om te reageren in mijn forum
Zoeken in blog
Deze blog is opgedragen aan mijn overleden echtgenote Lucienne.
In 2012 verloor ze haar moedige strijd tegen kanker!
In 2011 startte ik deze blog, omdat ik niet mocht stoppen met mijn UFO-onderzoek.
BEDANKT!!!
Een interessant adres?
UFO'S of UAP'S, ASTRONOMIE, RUIMTEVAART, ARCHEOLOGIE, OUDHEIDKUNDE, SF-SNUFJES EN ANDERE ESOTERISCHE WETENSCHAPPEN - DE ALLERLAATSTE NIEUWTJES
UFO's of UAP'S in België en de rest van de wereld Ontdek de Fascinerende Wereld van UFO's en UAP's: Jouw Bron voor Onthullende Informatie!
Ben jij ook gefascineerd door het onbekende? Wil je meer weten over UFO's en UAP's, niet alleen in België, maar over de hele wereld? Dan ben je op de juiste plek!
België: Het Kloppend Hart van UFO-onderzoek
In België is BUFON (Belgisch UFO-Netwerk) dé autoriteit op het gebied van UFO-onderzoek. Voor betrouwbare en objectieve informatie over deze intrigerende fenomenen, bezoek je zeker onze Facebook-pagina en deze blog. Maar dat is nog niet alles! Ontdek ook het Belgisch UFO-meldpunt en Caelestia, twee organisaties die diepgaand onderzoek verrichten, al zijn ze soms kritisch of sceptisch.
Nederland: Een Schat aan Informatie
Voor onze Nederlandse buren is er de schitterende website www.ufowijzer.nl, beheerd door Paul Harmans. Deze site biedt een schat aan informatie en artikelen die je niet wilt missen!
Internationaal: MUFON - De Wereldwijde Autoriteit
Neem ook een kijkje bij MUFON (Mutual UFO Network Inc.), een gerenommeerde Amerikaanse UFO-vereniging met afdelingen in de VS en wereldwijd. MUFON is toegewijd aan de wetenschappelijke en analytische studie van het UFO-fenomeen, en hun maandelijkse tijdschrift, The MUFON UFO-Journal, is een must-read voor elke UFO-enthousiasteling. Bezoek hun website op www.mufon.com voor meer informatie.
Samenwerking en Toekomstvisie
Sinds 1 februari 2020 is Pieter niet alleen ex-president van BUFON, maar ook de voormalige nationale directeur van MUFON in Vlaanderen en Nederland. Dit creëert een sterke samenwerking met de Franse MUFON Reseau MUFON/EUROP, wat ons in staat stelt om nog meer waardevolle inzichten te delen.
Let op: Nepprofielen en Nieuwe Groeperingen
Pas op voor een nieuwe groepering die zich ook BUFON noemt, maar geen enkele connectie heeft met onze gevestigde organisatie. Hoewel zij de naam geregistreerd hebben, kunnen ze het rijke verleden en de expertise van onze groep niet evenaren. We wensen hen veel succes, maar we blijven de autoriteit in UFO-onderzoek!
Blijf Op De Hoogte!
Wil jij de laatste nieuwtjes over UFO's, ruimtevaart, archeologie, en meer? Volg ons dan en duik samen met ons in de fascinerende wereld van het onbekende! Sluit je aan bij de gemeenschap van nieuwsgierige geesten die net als jij verlangen naar antwoorden en avonturen in de sterren!
Heb je vragen of wil je meer weten? Aarzel dan niet om contact met ons op te nemen! Samen ontrafelen we het mysterie van de lucht en daarbuiten.
01-10-2025
Mysterious interstellar object may be the source of unexplained signal beamed at Earth 48 years ago
Mysterious interstellar object may be the source of unexplained signal beamed at Earth 48 years ago
A mysterious space signal that has never been explained may have come from an equally mysterious object racing through our solar system.
Harvard astrophysicist Avi Loeb, who has continued to theorize that the object known as 3I/ATLAS could be an alien craft, has said the famous 'WOW! signal' may have come from this fast-moving visitor.
3I/ATLAS was first detected by astronomers this summer and is now only days away from making a close pass by Mars.
Loeb has noted several irregularities in the supposed comet that suggest it could be something that's artificially constructed with a mysterious mission that takes it past three planets in the solar system.
Now, Loeb has drawn a connection between 3I/ATLAS and this unexplained space signal received in 1977.
The WOW! signal was captured by the Ohio State University's Big Ear radio telescope for 72 seconds, in a burst so unusual that it prompted astronomer Jerry Ehman to write 'WOW!' on the telescope's readout.
Loeb's new analysis has found that on August 12, 1977, just a few days before the WOW! signal was detected, 3I/ATLAS was in a part of the sky very close to where the signal came from.
The chances of two random points in the sky being this close are only about 0.6 percent, which makes this potential connection even more compelling.
3I/ATLAS (pictured) is the third interstellar object discovered by astronomers as it passes through our solar system
The 'WOW! signal' was received on Earth back in 1977 and scientists have not been able to explain what produced it
If the signal did come from 3I/ATLAS, Loeb explained that it would have needed a transmitter as powerful as a nuclear power plant on Earth to send it from that distance.
Although astronomers have not found any proof of artificial technology on the surface of the object nearing Earth, Loeb has previously theorized that 3I/ATLAS could be a nuclear-powered vessel.
His claims were based on 3I/ATLAS appearing to generate its own light in a photo by the Hubble Telescope in August.
'3I/ATLAS could be a spacecraft powered by nuclear energy, and the dust emitted from its frontal surface might be from dirt that accumulated on its surface during its interstellar travel,' Loeb wrote in a statement.
Since then, scientists have widely dismissed the alien spacecraft theory, concluding that the interstellar object is a strange comet that's composed of a completely different chemical makeup than most comets created in our solar system.
So far, no one has checked if 3I/ATLAS has been sending out radio signals, but Loeb hopes this coincidence will encourage scientists to take a closer look.
This year, Earth spacecraft near Mars and Jupiter will get a chance to observe 3I/ATLAS as it passes by, which could give us more clues.
NASA has just unveiled a new tracking system for 3I/ATLAS, which allows anyone to zoom in and look at the object up close. According to NASA's simulation, it's a giant space rock with a white tail that will make it's closest pass by Mars on October 3.
3I/ATLAS will make a close pass by Mars on October 3 and NASA has just unveiled a new tracking tool for the public
As for the WOW! signal, it exhibited several intriguing characteristics, including a narrow bandwidth, high signal strength, and a frequency close to the natural radio emissions produced by neutral hydrogen - an element abundant in the universe.
These properties have led many to speculate the signal could have come from an alien origin, possibly sent by an extraterrestrial intelligence.
Looking at its possible connection to 3I/ATLAS, the signal showed a slight shift in frequency, which could match the speed of the comet moving toward the sun, though it's not a perfect match.
'In case we detect an artificial signal from an interstellar object, how should we engage with it?' Loeb asked in his latest paper on the interstellar object.
However, the Harvard professor said the answer is more complicated than some might think, warning that an alien intelligence could pose a threat to the human race.
'We must consider the possibility of a black swan event from interstellar objects resembling a comet at large distances, but potentially carrying devastating consequences to our future like a Trojan Horse,' Loeb warned.
NASA whistleblowers have come out with a dire warning, predicting that an astronaut will likely die in a tragic accident due to shocking changes at the space agency.
In a 21-page report released by the USSenate Committee on Commerce, Science, and Transportation, NASA employees claimed leadership has been keeping plans secret, with no written records, and shutting down open communication.
Whistleblowers believed future astronauts were at risk because of significant budget cuts proposed by the Trump Administration and an alleged culture of fear that's stopping workers from reporting safety problems.
One person who spoke to the committee warned that this could lead to an astronaut death soon due to ignored safety issues on upcoming space flights.
The committee specifically point the blame at the Trump White House and the Office of Management and Budget (OMB), led by Director Russell Vought, for these safety risks, accusing them of illegally forcing unapproved budget cuts on NASA this year.
The budget cuts included a proposed rollback from $24.8 billion to $18.8 billion for NASA's 2026 budget, a 24 percent overall slashing.
That May proposal focused on a 33 percent cut to science projects, a 47 percent reduction in NASA projects, and laying off 32 percent of the agency's workforce.
'No one is coming to save us,' a whistleblower said in the report.
NASA recently revealed 10 new astronauts who will make up its first new recruits since 2021, including some who may be the first people to set foot on Mars
Under the Trump Administration's budget cuts, nearly every area of NASA would see reductions, including a nearly 50 percent cut to major science programs (Stock Image)
The NASA staffers told the committee leadership, including Chief of Staff Brian Hughes, ordered them to only follow the unapproved 2026 budget (PBR) and that 'if it's not in the PBR, it does not count.'
This prompted them to come forward because they saw the policy changes as breaking NASA's rules and endangering its mission.
The whistleblowers added they spoke out to protect NASA's future, expressing heartbreak over losing young talent and fearing that without action, the agency's safety and innovation could collapse.
Another NASA employee said they were, 'very concerned that we're going to see an astronaut death within a few years.'
The committee added that the US Constitution is clear in this situation, declaring that the executive branch is not allowed to unilaterally impose a president's proposed budget without the approval of Congress.
'NASA's legal office should know better,' a whistleblower said.
Those that have come forward added that NASA employees are generally 'keeping their heads down' out of fear of retaliation for raising safety concerns.
Former NASA chief Bill Nelson told the Daily Mail that by cutting efforts to return to the moon and to pursue Mars missions undermines NASA's future (Stock Image)
During a recent NASA press conference, which announced the discovery of microbial life on Mars, new NASA Administrator Sean Duffy was pressed on the impact of the $6 billion budget cut to the agency.
Speaking specifically about how the proposed budget would cancel a sample retrieval mission to Mars, Duffy said NASA was looking at their budgets and finding faster and more cost-effective ways of completing space missions.
Despite the cuts, Duffy declared that the US would launch the Artemis II mission, which will orbit the moon, in less than two years.
He added that the Artemis III astronaut mission would then 'land and establish a long-term presence of life on the moon led by America.'
This month, former NASA chief Bill Nelson voiced his opposition to the cuts, fearing that future missions to Mars involving robots like the Perseverance rover were now in jeopardy.
'A lot of things I deeply care about and worked hard on are getting cut,' lamented Nelson, the former Democratic senator who flew aboard the space shuttle and served as NASA's 14th administrator.
However, the White House has dismissed the criticism and maintained that NASA has been 'grossly over budget,' arguing the same goals could be met through future manned Mars missions instead.
Als er een ruimtewedloop is, lijkt China deze al te winnen: NASA’s Mars-monsters en de race om Mars-monsters terug naar de Aarde
Als er een ruimtewedloop is, lijkt China deze al te winnen: NASA’s Mars-monsters en de race om Mars-monsters terug naar de Aarde
Een illustratie van NASA's Perseverance-rover naast een voorraad verzegelde Marsmonstervoorzieningen. De rover heeft 30 geologische monsters op Mars verzameld, maar NASA's geplande missie om ze op te halen is vertraagd.
(Beeldkrediet: NASA/JPL-Caltech)
Inleiding
Er wordt momenteel veel gesproken over een mogelijke ruimtewedloop tegen Mars. Een opvallende opmerking luidt: als er al een race is, dan lijkt China deze al te winnen, en NASA zal waarschijnlijk geen Mars-monsters (monsters) eerder terughalen naar de Aarde dan China. Experts wijzen erop dat traditionele tijdlijnen en technologische mijlpalen steeds vaker onder druk komen te staan door geopolitieke belangen, technologische doorbraken en de enorme complexiteit van een Mars Sample Return-missie. Dit artikel verkent de context, de stand van zaken en wat dit betekent voor de toekomst van de verkenning van de Rode Planeet.
1. Achtergrond
Waarom Mars-samples terug naar de Aarde zo aantrekkelijk zijn Het verzamelen en terugbrengen van Mars-monsters naar de Aarde is een unieke kans om een schat aan wetenschappelijke informatie direct te analyseren met de precisie en instrumentatie die op Aarde ontbreekt op een ruimtevaartuig. Terwijl robots op Mars rovers en landers laten zien wat mogelijk is, biedt een wetenschappelijk laboratorium op Aarde de mogelijkheid tot diepgravende analyses op moleculair, isotopisch en biogeochemisch niveau. De belofte is simpel maar enorm: om graffiti-achtige tekens van vroeg leven, geologische processen en de geschiedenis van de planeet beter te begrijpen dan ooit tevoren.
Toch is een Mars Sample Return (MSR) missie een van de meest ambitieuze en risicovolle ondernemingen in de ruimtevaart. Het vereist coördinatie over meerdere ruimtemissies, strikte contaminatiecontrole, veiligheid op aarde en een dure investeringslijn die decennia kan overspannen. Die combinatie van technologische complexiteit en operationele verwikkelingen legt een hoge lat voor tijdlijnen en budgetten. Daarom zien experts MSR als een langetermijninspanning, waarbij elke stap een leerproces is.
Een "selfie" van China's Zhurong-rover en het Tianwen-1 landingsplatform op Mars in 2021.
Bron: China National Space Administration
2. NASA, MSR en de haalbaarheid op kortere termijn
Sinds het begin van de jaren 2000 heeft NASA MSR-ambities gekoesterd, maar de uitvoering is niet lineair verlopen. De huidige visie draait om een combinatie van een Mars-orbitalsessie, een lander en een sample-return missie die terugkeer naar de Aarde mogelijk maakt. De planning is ver verwijderd van een eenvoudige “lima” met een enkele vlucht. Er zijn cruciale technologische knelpunten, zoals het veilig ophalen van Marsboden met mondiaal contaminants en het betrouwbaar afleveren van monsters in een speciaal container op aarde, waar streng toezicht en controle op aanwezigheids- en opslagsystemen nodig zijn.
Daarnaast spelen budgettaire realiteiten en prioriteitsafwegingen in NASA’s bredere programma een grote rol. MSR vereist partnership en cofinanciering met andere ruimtevaartorganisaties en industriepartners. In het recente verleden zijn er stappen gezet zoals pre-voorbereidende studies, concept-ontwikkeling en demonstratie-activiteiten die de haalbaarheid vergroten, maar een concrete startdatum blijft onzeker. Daardoor ontstaat bij critici het beeld dat NASA mogelijk de tijd vooruit maakt op sommige vlakken, maar de totale terugkeer van Mars-monsters naar de Aarde een lange, complexe en gedeeltelijk onvoorspelbare onderneming blijft.
China heeft actief hun plannen voor aankomende ruimtemissies gedeeld, waaronder de asteroïdemissie, de Mars-monsterrterugbrengmissie en de missie naar Jupiter. Samen met hun ambitieuze robotische missies kondigde de CNSA in 2021 aan dat ze van plan zijn hun eerste bemande missie naar Mars te sturen in 2033, met als doel regelmatige missies naar Mars te sturen en uiteindelijk daar een basis te bouwen. China heeft ook hun Tiangong-ruimtestation, dat momenteel drie astronauten huisvest voor verblijven van zes maanden.
3. China’s ruimteprogramma
Op weg naar Mars-monsters terug naar huis China heeft de afgelopen jaren aangekondigd en vervolgens laten zien dat het mee wil doen aan het meest ambitieuze deel van de planetoid-wereld: een Mars-sample return. Het land heeft al een succesvol ruimtemissiesucces gevierd met de Tianwen-1 missie: een orbiter, een lander en een rover die gezamenlijk de Rode Planeet heeft onderzocht. De volgende stap, zo suggereren officiële aankondigingen en openbare plannen, is het ophalen van Mars-monsters en het terugbrengen naar de Aarde.
China’s aanpak wordt vaak geprezen om zijn gelikte randvoorwaarden: duidelijke doelstellingen, agressieve tijdlijnen en een cultuur van strakke uitvoering. De betrokkenheid van een robuuste ruimtevaartindustrie, een intensief test- en validatieprogramma en een streven naar geopolitieke invloed op het gebied van ruimteonderzoek, dragen eraan bij dat China’s plannen serieus worden genomen. Experts wijzen erop dat China niet alleen investeert in individuele missies, maar ook in de infrastructuur die nodig is om zulke missies te ondersteunen: grondstations in verschillende delen van de wereld, geavanceerde grondcontrole, en een rijp beleid voor ruimtevaartveiligheid en -beveiliging.
NASA-programmawetenschapper Lindsay Hays legt uit wat mogelijke tekenen van oud leven op andere werelden definieert en waarom deze nader onderzoek vereisen. De Perseverance-rover van NASA op Mars zoekt naar deze tekenen, verzamelt monsters voor toekomstige terugkeer naar de aarde en helpt de weg te effenen voor menselijke verkenning.
Bron: NASA/JPL-Caltech What is a Potential Biosignature?
4. Waarom de tijdlijnen zo anders uitpakken dan men zou verwachten
Technische complexiteit: Het terughalen van Mars-monsters vereist meerdere stappen: verregaande landers, sample caches op de maan of in een tweede voertuig, en een terugkeer-progamma dat monsters veilig naar de Aarde brengt en vervolgens in een controleert gecontroleerde bioveiligheidsomgeving onderzoekt. Elk van deze stappen heeft unieke ontwerpuitdagingen en testvereisten.
Contaminatiedeals en ruimtebodemhygiëne: Een van de grootste zorgen is het voorkomen van biologische of chemische verontreiniging, zowel van Mars naar Aarde als omgekeerd, wanneer monsters worden aangeraakt en geanalyseerd. De regelgeving en procedures voor biosafety zijn streng en vereisen uitgebreide validatie.
Politieke en financiële factoren:MSR-projecten financieren zich niet vanzelf. Veranderingen in politieke prioriteiten, economische omstandigheden en internationale samenwerking kunnen tijdlijnen flink beïnvloeden. De huidige geopolitieke context, gekenmerkt door belangrijke concurrentie in de ruimte, heeft de kosten en de politieke bereidheid om samen te werken kunnen beïnvloeden
Innovatie- en supply-keten uitdagingen: De benodigde systemen en onderdelen (zoals speciale weerbestendige containers en strikte contaminatiewaardesystemen) moeten wereldwijd worden ontwikkeld en geproduceerd, hetgeen logistieke vertragingen oplevert. Elk missertje in de supply chain kan de hele klok vertroebelen.
Na meerdere jaren en meerdere beoordelingen van het gezamenlijke NASA/Europese Ruimtevaartorganisatie MSR-project was er een schrikbarend prijskaartje. Vroege conceptuele kunstwerken tonen een door de VS geleid initiatief.
(Afbeelding tegoed: NASA/JPL/Caltech)
5. Geopolitieke realiteiten
De ruimte als theater van invloed De opkomst van een ruimtewedloop vol geopolitieke concurrentie heeft de dynamiek van missies veranderd. Voor sommige analisten is China al dichter bij de finishlijn dan NASA, omdat China sneller in staat blijkt te schakelen tussen planning, technologische ontwikkeling en uitvoering. Anderen merken op dat NASA, ondanks de doorbraaktempo en het succes van NASA’s Mars- en Artemis-programma’s, met zijn eigen stevige partnernetwerk en multinationale samenwerking, in staat zal zijn om MSR-ambities te realiseren, zij het mogelijk op een iets langere tijdschaal.
Toch blijft de onderstroom duidelijk: wie als eerste Mars-monsters op aarde kan ontvangen, zal niet alleen een wetenschappelijke prestatie leveren, maar ook een symbolische overwinning die de perceptie van leiderschap in de ruimtevaart bepaalt. In informele bewoordingen wordt er gezegd dat “als er een ruimtewedloop is, China deze al gewonnen heeft”—niet dat NASA geen significante wetenschappelijke vooruitgang boekt, maar dat de tijdlijn en de haalbaarheid van MSR er anders uitzien dan men in de vroege jaren 2000 had verwacht.
Waar te verzamelen, wat te verzamelen, hoe te verzamelen en hoe te analyseren wat wordt gevonden, wordt actief bestudeerd door functionarissen van het Chinese ruimtevaartprogramma.
(Beeldcredit: De Universiteit van Hong Kong)
China's routekaart voor een Marsmonstermissie die in 2028 gelanceerd zal worden.
(Beeldcredit: The University of Hong Kong/Zengqian Hou, et al.)
6. Wat betekent dit voor de wetenschap en de publieke perceptie?
Wetenschappelijke implicaties
Een succesvolle terugkeer van Mars-monsters zal de wetenschappelijke gemeenschap in staat stellen om analyses uit te voeren met hulp van state-of-the-art laboratoria op aarde. Dit kan leiden tot nieuwe inzichten in de geologie, de ontwikkeling van Mars en mogelijk signalen van vroeg leven of prebiotische chemische processen. De vooruitgang in analyse-technieken en de interoperabiliteit van internationale partners kunnen de kwaliteit en snelheid van wetenschappelijk begrip aanzienlijk verhogen.
Publieke perceptie en inspanning
Een duidelijke publieke boodschap over wie wanneer Mars-monsters terugbrengt, kan de publieke interesse in ruimtevaart versterken of juist tot discussies leiden over prioriteiten en uitgaven. Belangrijke ruimte-evenementen en persmomenten kunnen dienen als katalysator voor bredere belangstelling en educatieve projecten.
Beleidskaders en internationale samenwerking
De gespannen maar noodzakelijke dialoog tussen ruimtevaart agentschappen wereldwijd, met inbegrip van regels rondom veilige terugkeer, data sharing en aansprakelijkheid, zal cruciaal blijven. Internationale samenwerking kan missies haalbaarder maken, maar vereist ook duidelijke afspraken over eigendomsrechten van monsters, data en de verdeling van wetenschappelijke voordelen.
7.Conclusie:
Wat de toekomst ons leert Of China nu daadwerkelijk als eerste Mars-monsters naar de Aarde zal brengen, of NASA uiteindelijk de eerste officiële terugkeer zal realiseren, is voor het moment minder belangrijk dan wat deze race leert over de toekomst van ruimteverkenning. Het gaat niet alleen om de eindbestemming, maar om de weg ernaartoe: de technologische innovatie, de samenwerking tussen landen en sectoren, en de maatschappelijke dialogen over de waarde van onderzoek en ontdekking.
De uitspraak dat China mogelijk vooroploopt in de ruimtewedloop straalt een pragmatisme uit: de realiteit is dat zowel de technologische doorbraken als de geopolitieke omstandigheden voortdurend veranderen. In die zin is er geen eenvoudige winnaar in een dergelijke complexe onderneming. Wat wel vaststaat, is dat Mars-exploratie niet langer een eenvoudig “sciencefiction”-verhaal is. Het is nu een internationaal en multidisciplinair project waar elke morgen een stap dichter bij de Aarde mogelijk wordt gemaakt—en waarin de wereld toekijkt hoe twee grootmachten, en mogelijk anderen, de grenzen van wat mogelijk is opnieuw verleggen.
Eind noot
Het debat over wie Mars-monsters als eerste terugbrengt naar de Aarde, blijft een boeiend onderwerp voor ruimtefanaten, wetenschappers en beleidsmakers. Terwijl mengformuleringen over de ruimtewedloop bestaan, blijft één ding duidelijk: de technologische ontwikkeling, de internationale samenwerking en de publieke belangstelling voor Mars zullen in de komende decennia centraal staan. Of China nu wint in de perceptie, de realiteit blijft dat Mars-verkenning een collectieve menselijke onderneming is—een onderneming waarin elke stap, elke innovatie en elke samenwerking bijdraagt aan ons begrip van de Rode Planeet en ons eigen plek in het universum.
View of Magellan radar data of the surface of Venus, revealing a surface shaped by geological activity (Credit : NASA/JPL)
Venus is often called Earth's "sister planet" because of their similarities in size, mass, and composition. Both are rocky worlds that formed around the same time in the inner Solar System however, despite these similarities, Venus evolved into a world vastly different from Earth, with surface temperatures around 465°C, crushing atmospheric pressure 90 times greater than Earth’s and thick clouds containing sulphuric acid circling the planet. These dramatic differences between two such similar planets make Venus a fascinating subject for planetary scientists to study.
First view of Venus's surface. The first clear panoramic image taken by Venera 9 lander. This image was sent back in the lander's 53-minute lifetime 22 October 1975
(Credit : Ted Stryk)
Beyond their similar dimensions, Venus and Earth share another similarity, both planets are geologically active and have been shaped by volcanism. Venus's surface is dominated by vast volcanic plains, enormous shield volcanoes and vast lava flows. Like Earth, Venus has been resurfaced by molten rock erupting from its interior, creating landscapes that bear striking resemblances to volcanic regions on our own planet. Understanding these volcanic features, including the underground structures they create, offers a window into the geological processes that have shaped both worlds and provides clues about why they took such different evolutionary paths.
An international team led by Barbara De Toffoli from the University of Padova have been studying radar images and topographic data from earlier Venus missions. They focused their attention on the planet's large shield volcanoes, those exceeding 100 kilometres in diameter to search for signs of collapsed lava tubes. These features are natural tunnels that form when the surface of a lava flow cools and solidifies while hot lava continues to flow underneath. Once the lava drains away, it leaves behind a hollow tube. They identified four clear curving chains of pits that appear to mark where sections of underground tubes have collapsed.
These tubes have been found on the Moon and Earth, but until now, their existence on Venus remained purely theoretical. Their existence on Venus, or any planet for that matter, provides valuable insights into the volcanic history and perhaps excitingly, may even serve as a shelter for future human exploration missions. This may sound somewhat fanciful but their subsurface nature would offer protection from the hostile environment of the surface.
Thurston Lava Tube in Hawaii Volcanoes National Park, Hawaii. The step mark, more visible on the right wall, indicates the depth at which the lava flowed for a period of time
(Credit : Frank Schulenburg)
Unlike straight pit chains caused by tectonic forces pulling the crust apart, these formations curve and wind across the surface, following the natural downhill flow of ancient lava. The team were convinced the pit discovery is not related to tectonic activity due largely to their sinuous nature but also their dimensions since tectonic pits present as different sizes. The team identified four instances of these pits and interestingly they all exist on the flanks of volcanoes covered with extensive lava flows. This is exactly where you would expect to find lava tubes. The pits are also aligned in a down hill orientation making this consistent with lava flowing downhill.
This discovery significantly advances our understanding of how Venus has evolved geologically. The planet's extreme surface conditions make it notoriously difficult to study. Lava tubes offer a window into Venus's volcanic past and could help us to refine models of the planet's thermal and tectonic evolution. I have to confess though, as a not-so-closet geek, I’m quite taken by the concept of these extensive subterranean tunnels being used by future human explorers. With upcoming missions like the ESA EnVision mission to Venus which has a Subsurface Radar Sounder we will get to reveal the true extent of these tubes and perhaps take us a tiny step closer to human exploration.
Launched in 2009, theKepler Space Telescope revolutionized astronomy by discovering thousands of exoplanets in over 150,000 star systems. Kepler was specifically designed to detect Earth-sized planets by monitoring stars for periodic dips in brightness, which may result from planets passing in front of their star relative to the observer. Known as the Transit Method (or Transit Photometry), this technique has allowed astronomers to identify the majority of the more than 6,000 exoplanets in the current census. However, the method is not perfect and produces some false positives (initially as high as 5%–10%), which can sometimes be caused by other celestial objects.
According to new research by a team of astronomers from the Chinese Academy of Sciences (CAS), this was the case with KOI-1755, a star located 982 light-years from Earth that periodically dims. As they indicated in their study, recently published in The Astrophysical Journal, the transit signal was a false positive caused by an eclipsing binary. The research team was led by Ph.D. candidate Wang Haozhi under the supervision of Prof. Ali Esamdin at the CAS's Xinjiang Astronomical Observatory (XAO).
Kepler first detected a transit-like event from KOI-1755 in 2014 and again in 2021, both of which corresponded to a period of about 25 days. On the second occasion, the signal was interpreted as a possible indication of a planet with 5.9 Earth radii (or 0.5 Jupiter radii), making it comparable in size to a Neptune-sized gas giant. Despite this periodic dimming, the true source of the signals has remained a mystery. To determine the true source of the dimming, the CAS team analyzed data from Kepler's Target Pixel Files (TPFs).
They subjected this data to pixel-level flux modeling. centroid shift measurements, and cross-matching with the Gaia mission's third data release (DR3). This modeling strategy significantly improved the quality of the Kepler light curves, and the DR3 data allowed them to avoid contamination from nearby stars. This allowed the team to isolate the uncontaminated light curve from the background star, confirming that it was caused by an eclipsing binary.
In short, their analysis revealed that the system is not a single star, but instead composed of two dwarf stars with an orbital period of about 6.14 days. In addition to eclipses, their analysis showed the binary system exhibits periodic modulations caused by starspots and differential rotation. This study not only clarified the true source of KOI-1755's signals but also demonstrated the effectiveness of the pixel-level photometric modeling method developed by Wang and his colleagues. It also demonstrates that there could still be an invaluable amount of information on stellar dynamics embedded in Kepler and K2 mission data.
The method could also be very promising for investigating other transit-like signals in the Kepler archives and other missions that rely on the Transit Method to detect exoplanets, such as the Transiting Exoplanet Survey Satellite (TESS), and demonstrates how retired missions can experience a second life through improved analysis techniques.
Supermassive Black Hole or Galactic Consciousness?
Supermassive Black Hole or Galactic Consciousness?
Imagine looking up at the night sky and wondering not only what lies inside galaxies, but also what a galaxy itself might be thinking. The term “supermassive black hole” (SMBH) is a well-established part of modern astronomy. The idea of “galactic consciousness,” by contrast, is more philosophical and speculative. It asks whether a galaxy could possess awareness, goals, or a form of mind. Both topics invite big questions about scale, gravity, information, and what it means to know something. Here, we’ll explore what these terms mean, how scientists study them, and what the differences are between a real, physical object and a thought about collective, galaxy-scale behavior.
An Einstein ring around the galaxy LRG 3-757, at the center of which the heaviest black hole was discovered.
Photo: NASA
A color image of the Cosmic Horseshoe created using filters F814W, F606W and F475W. The system consists of the Einstein ring of the Cosmic Horseshoe, as well as a radial arc and its opposite image.
The insert shows a radial arc. Source: NASA
First, what is a supermassive black hole? A black hole is a region of space where gravity is so intense that nothing, not even light, can escape from it. The boundary around this region is called the event horizon. Supermassive black holes are, as the name implies, enormous. They typically contain millions to billions of solar masses and sit at the centers of most large galaxies, including our Milky Way. The evidence for their existence is indirect but strong. We observe stars and gas moving at high speeds near the centers of galaxies. We detect powerful emissions in X-ray light and radio waves from material that is heated to extreme temperatures as it spirals inward, a process known as accretion. When matter falls toward a black hole, it forms an accretion disk that glows brilliantly, especially in X-rays, before it disappears behind the event horizon. In many galaxies, the behavior of stars and gas in the inner regions suggests the gravitational pull of something incredibly dense and compact, consistent with a black hole. In other cases, we see jets of particles blasting out at nearly the speed of light, launched by magnetic fields twisted around the spinning black hole. The consensus among astronomers is strong: many, if not most, large galaxies host a supermassive black hole at their center, often feeding on surrounding material.
Why are SMBHs so important? They act as engines that regulate the growth of their host galaxies. There is a remarkable relationship between the mass of a galaxy’s central black hole and the properties of the galaxy’s bulge, such as its mass and brightness. This correlation, called the M-sigma relation, suggests a co-evolution: as the black hole grows by pulling in matter, the energy it releases can heat or push away gas, influencing future star formation. In other words, SMBHs do not merely sit in the middle; they can shape the fate of their entire galactic neighborhoods. This connection between tiny scales (the event horizon and accretion physics) and vast scales (galaxy evolution) makes SMBHs a focal point in astrophysics.
Now, what about galactic consciousness? The phrase asks whether a galaxy could be conscious in some sense—aware, purposeful, or able to experience something. The idea has historical and speculative roots in panpsychism and in metaphorical descriptions of cosmic order. Some thinkers ask whether galaxies, as complex systems with many interacting parts, could exhibit collective behavior akin to a mind. A galaxy is made of stars, gas, dark matter, magnetic fields, and dark energy. These components follow the laws of physics and interact in complex ways that can produce patterns, rhythms, and even evolutions that look organized. But consciousness, as scientists typically define it, involves subjective experience, feelings, and a first-person point of view. So far, there is no evidence that galaxies possess subjective experience. There is also no widely accepted framework in physics that would treat a galaxy as a conscious agent with beliefs or desires. The claim remains more poetic or metaphorical than empirical.
A useful way to compare the two ideas is to distinguish what is observable and what is interpretive. A supermassive black hole has clear, testable signatures: the motion of stars near the center, X-ray emission from hot gas, and sometimes relativistic jets. These are physical, measurable phenomena governed by gravity and quantum physics combined with relativity. Galactic consciousness, if it exists, would be hard to test directly. What would count as evidence? Some might argue that a galaxy’s large-scale organization and behavior could be interpreted as “aimed” at sustaining star formation, maintaining stability, or preserving structure. But such interpretations risk anthropomorphism. Complex systems can appear to have goals simply because many parts respond to common pressures and constraints. The difference between “the galaxy acts to preserve itself” and “the galaxy has an intention to preserve itself” is subtle but crucial. In science, correlation and pattern do not automatically imply consciousness.
Another angle is to consider scale and energy. SMBHs are extreme sinks of mass-energy and powerful sources of energy; their gravity warps spacetime and their accretion disks heat up to temperatures rivaling the cores of stars. The physics is explicit, even if some details remain mysterious. Galactic consciousness, by contrast, would be an emergent property, if it exists at all, arising from the collective behavior of a massive network of components. Emergent phenomena are common in nature: water’s wetness, the flocking of birds, and the emergence of nervous-system activity from neurons. Some philosophers and scientists like to discuss whether there could be a form of “galactic ethics” or “galactic purpose,” but these ideas are philosophical tools rather than testsable predictions.
What would be the practical implications if galaxies were conscious? If we could demonstrate some form of awareness in a galaxy, it would challenge how we understand intelligence, life, and agency across the universe. It might imply that mind is not limited to biological organisms but can arise in complex systems with certain kinds of organization. On the other hand, there is also a risk of conflating metaphor with mechanism. Speaking about a galaxy “deciding” to endure or “seeking” stability is a useful narrative for teaching or thinking, but it might obscure the actual physics driving observed patterns.
Currently, the evidence points strongly toward SMBHs as real, well-understood physical objects with measurable effects on their surroundings. The case for galactic consciousness, by contrast, remains speculative and largely rhetorical. Scientists can and do study galaxies as physical systems: how stars form within them, how dark matter shapes their halos, how gas cools and collapses to form new generations of stars, and how feedback from black holes and supernovae regulates these processes. These are measurable questions about structure, dynamics, and evolution. The idea of a mind behind the galaxy is not a testable scientific hypothesis in the same sense.
That doesn’t mean the two topics are unrelated. They invite complementary perspectives on scale, causation, and the mystery of the universe. The existence of SMBHs demonstrates how gravity and quantum physics combine to produce extreme environments. The possibility of galactic consciousness invites humility: the universe may harbor forms of organization and complexity that we have not fully understood, and our intuition about life and mind may be too limited to grasp the grandest scales. In science, bold questions often begin with bold metaphors. The critical step is to translate a metaphor into testable ideas, or to acknowledge when an idea is best kept as a thought experiment.
For students and curious readers, a practical takeaway is to separate what we know from what we wonder. We know that SMBHs exist, we know they affect their galaxies, and we can observe many of their signatures with telescopes across the electromagnetic spectrum. We also know that galaxies, as massive collections of matter interacting through gravity, can produce complex and beautiful structures. Wondering whether they possess consciousness can inspire imaginative reflection, innovative hypotheses, and careful philosophical debate. It can also remind us to distinguish observational science from speculative speculation.
In teaching and outreach, it can be helpful to present both sides clearly. When explaining SMBHs, one might describe the event horizon, the accretion disk, the gravitational influence on nearby stars, and the evidence from observations like stellar motions near the galactic center and X-ray emissions. When broaching galactic consciousness, one could present the idea as a philosophical possibility, highlight why it is appealing to some, and then explain the scientific challenges: the lack of verifiable criteria, the problem of subjective experience, and the risk of anthropomorphism.
As technology advances, our ability to observe galactic centers and the broader structure of galaxies will improve. Instruments like more powerful telescopes, interferometers, and detectors across different wavelengths will refine our understanding of SMBHs and their interactions with their hosts. If ever new data suggested unusual, non-physical explanations for galactic behavior, scientists would scrutinize them with the same rigor they apply to any extraordinary claim. Until then, the most robust scientific narrative describes galaxies as ecosystems influenced by gravity, gas dynamics, star formation, and the energy from central black holes—beautiful, intricate, and governed by the laws of physics.
In conclusion, a supermassive black hole is a concrete, well-supported feature of many galaxies, including the Milky Way. It has measurable effects, testable predictions, and a central role in theories of galaxy formation and evolution. Galactic consciousness, by contrast, remains a provocative idea at the intersection of philosophy and speculative science. It prompts us to ask about the nature of mind, the limits of anthropomorphism, and the possible forms that life and intelligence could take in the universe. For now, the science keeps its feet on the ground: SMBHs are real and influential, while galaxy-scale consciousness is an intriguing possibility—one that invites thoughtful imagination but requires far more evidence before it could be considered part of our scientific understanding. The universe continues to be a place of extraordinary phenomena, from the shadowy depths of event horizons to the grand, emergent patterns of galaxies that light up the cosmos.
Deze dissertatie onderzoekt twee controversiële en intrigerende mogelijkheden over het universum op grote schaal:
het bestaan en de rol van supermassieve zwarte gaten (SMBH’s) in galactische evolutie en
het concept van galactische bewustzijn, oftewel of sterrenstelsels of hele galactische netwerken een vorm van collectief of emergent bewustzijn bezitten. Door een combinatie van astronomie, theoretische fysica en filosofie van de geest wordt verkend welke bewijzen, aannames en implicaties aan elke kant van de discussie gekoppeld zijn. De conclusie benadrukt dat het huidige bewijs eerder wijst in de richting van een centrale, fysiek en dynamisch dominante rol van SMBH’s, terwijl het idee van galactisch bewustzijn fascinatie blijft maar met aanzienlijk minder empirie en streng empirisch toetsbaar mechanismen. Desalniettemin leveren beide thema’s waardevolle inzichten op voor ons begrip van kosmische hiërarchieën en de grens tussen natuurkunde en metafysica.
Inleiding
Veel sterrenstelsels, waaronder onze eigen Melkweg, herbergen in hun kern een extreem massief object dat een roterende gas- en stofstroom naar zich toe trekt en daardoor een gebied met buitengewone zwaartekracht oproept: het supermassieve zwarte gat (SMBH). Dit centrale zwaartepunt speelt een cruciale rol in de vorming en evolutie van het hele stelsel, doordat het materie kan versnellen, uitbarstingen van straling kan veroorzaken en de dynamiek van sterren en gasruimtes in de omringende kern op allerlei manieren kan beïnvloeden. Tegelijkertijd rijzen er in de wetenschappelijke en filosofische literatuur vragen over de mogelijkheid dat galactische systemen op grotere schaal potentieel vormen van bewustzijn kunnen vertonen, of ten minste eigenschappen kunnen vertonen die lijken op cognitieve competenties zoals anticipatie, selectie van informatie, doelgericht handelen en lange-termijnplanning. Deze noties blijven controversieel en worden vanuit verschillende disciplines benaderd: astronomie, theoretische natuurkunde, complexiteitswetenschap en filosofie van de geest.
Dit werk schetst eerst de actuele stand van zaken: wat we empirisch waar kunnen nemen rondom SMBH’s, welke meetbare effecten zij hebben op hun omgeving, en welke mechanistische verklaringen het meest plausibel zijn volgens de huidige physicalistischer benaderingen. Vervolgens wordt ingegaan op de vraag naar bewustzijn in zeer grote, natuurlijke systemen: wat betekenen emergente eigenschappen precies in een galactisch context, en in hoeverre kunnen concepten als bewustzijn, intentie of intelligentie toegepast worden op systemen die bestaan uit ontelbareeltjes gravitationeel gevarreerde materie en uit miljarden sterbakens? De bespreking onderzoekt zowel streng wetenschappelijke als filosofische implicaties, zodat een samenhangend beeld ontstaat van wat we wel en niet kunnen claimen over bewustzijnsverschijnselen in galactische omgevingen.
De centrale these van dit werk is niet dat SMBH-dynamieken en hypothetische galactische bewustzijnstatistieken noodzakelijk in tegenspraak met elkaar staan, maar dat het huidige bewijsspectrum vaak nog ontoereikend is om bewustzijn als entiteit of status te rechtvaardigen. Wel leveren SMBH-gerelateerde processen talloze directe en meetbare correlaties—zoals accretiepatronen, feedbackmechanismen en rulings van gasstromen—that mogelijk dienen als sleutels tot een dieper begrip van galactische evolutie en de onderliggende fysica.
Theoretisch kader: samenhangende kernbegrippen
Supermassieve zwarte gaten:SMBH’s hebben massesies variërend van miljoenen tot miljarden zonmassa’s en zijn pieksaarsvijfdrie in het hart van de meeste grote en middelgrote sterrenstelsels. Hun gravitationele veld trekt niet alleen materie aan, maar bepaalt ook de dynamiek van omliggende structuren: de accretieschijf waar gas en stof extreem heet worden en intense straling uitzenden, de jets die langs enorme afstanden kunnen voorkomen, en de turbulente gasstromen in de centrale regio’s. Deze centrale machtige objecten vormen een sleutelmechanisme in de galactische evolutie: ze sturen accretieprocessen die energie vrijmaken in de vorm van röntgenstraling, ultraviolet en zichtbaar licht, en ze veroorzaken feedbackprocessen die de temperatuur, dichtheid en samenstelling van het omringende gas beïnvloeden. Door deze processen kan de groei van het sterrenstelsel worden gereguleerd, kunnen stervormingsbarrières ontstaan of verdwijnen, en kan de baryonische cyclus in de holte van het galactische centrum in balans blijven. Daarnaast dienen SMBH’s als natuurlijke laboratoria om de relativiteit en extreme kwantisële processen te testen, en leveren ze cruciale aanwijzingen over de vorming van massieve objecten in de vroege kosmos. De interacties tussen SMBH’s en hun gaststelsels blijven een dynamisch onderzoeksgebied waarbij men de koppeling tussen centrale krachterschakelingen en grootschalige evolutie probeert te ontleden.
Galactisch bewustzijn:een controversieel concept in de filosofie van de geest en in sommige emergentie-theorieën. Het vraagt aandacht voor of er op galactische schaal eigenschappen bestaan die buiten de eenvoudige som van individuele astro(fysische) processen vallen. Voor de meeste wetenschappers blijft bewustzijn primair een fenomeen van levende systemen met zenuwstelsels, maar sommige modelleringen verkennen hoe complexe netwerken—zoals hersenen of kosmische gasstromen—mogelijk macro-eigenschappen kunnen ontwikkelen die op ’bewuste’ processen zouden kunnen lijken. Binnen kosmische kaders wordt bewustzijn vaak benaderd als een analogie voor opmerkzaamheid, zelforganisatie en informatieverwerking op grootschalige schaal. Derhalve worden vragen gesteld over emergente eigenschappen van netwerken van sterren, sterrenstelsels en interstellaire/gasstromen: bestaan er patronen van organisatie die dezelfde logica volgen als cognitieve systemen, of blijft de analogie beperkt tot een metaforische beschrijving van systeemgedrag? Deze verkenning zoekt naar modellen die rekening houden met synergetische interacties, feedbackloops en communicatiekanalen tussen verschillende componenten van het galactische netwerk, zonder te claimen dat er daadwerkelijk subjectieve ervaring ontstaat.
Wetenschappelijke methoden:empirische observaties (bijv. haarspeldenroteringen, waterstoflijn-emissies, spectra van AGN, vrijwel directe imaging van SMBH’s door de Event Horizon Telescope) en theoretische modellering (numerieke simulaties van accretie, feedback en galactische evolutie) vormen de kern van ons toetsingskader. Met empirische waarnemingen kunnen we de massa, spin, activiteit en omgeving van SMBH’s in kaart brengen, de interacties met omringende gaslagen observeren en testen hoe deze objecten de fysieke toestand van hun gastgalaxie beïnvloeden. Tegelijkertijd leveren numerieke simulaties en analytische modellen een raamwerk om oorzakelijke mechanismen te onderzoeken: hoe wisselwerken tussen straling, kinetische energie en koud/hot gas de evolutie van zowel het centrale gebied als de gehele galaxie sturen. Door een combinatie van multi-wavelength observeraties, tijdsvariabiliteitstudies en vergelijkingen met simulaties kunnen wetenschappers een coherente theorie opbouwen die zowel de kleine-als grootschalige dynamiek van sterrenstelsels verklaart.
Methoden en aanpak Deze studie combineert literatuuronderzoek met synthese van theoretische modellen.
Methoden en aanpak Deze studie combineert literatuuronderzoek met synthese van theoretische modellen, met als doel een dieper inzicht te geven in zowel waargenomen fenomenen als onderliggende conceptuele kaders. De aanpak schetst een integrale route die empirische bevindingen koppelt aan theoretische verbeelding, zodat mogelijke mechanismen en hunrelevantie voor galactische evolutie beter kunnen worden geëvalueerd. De metodische stappen omvatten systematische literatuurverzameling, vergelijkende analyse van modellen en het formuleren van toetsbare hypothesen. Hierbij wordt gestreefd naar transparante verantwoording van bronnen en naar herhaalbare redeneringen die andere onderzoekers kunnen repliceren of uitdagen.
We bespreken:
Observatieve bewijzen voor SMBH’s:dynamische bevestiging via sterren- en gasbewegingen, maseringstechnieken en direct beeld van de omgeving van Sagittarius A* (Sgr A*). Deze onderdelen omvatten nauwkeurige metingen van stellar proper motions en trajecten in de onmiddellijke nabijheid van het superzware zwarte gat, evenals spectroscopische en interferometrische observaties die massa- en positieparameters opleveren. Daarnaast worden accretieve procesmodellen onderzocht, zoals schijven rondom SMBH’s, rijken aan gas- en magnetohydrodynamische (MHD) processen die emissie genereren across meerdere golflengten, en de daarbij behorende feedbackmechanismen die invloed hebben op de star-formation rate en de kinematiek van de omgevende bulge en halo. Een deel van deze sectie richt zich op de theoretische interpretatie van ontstane structuren, emissielijnen en variabiliteit, en op de wijze waarop deze observabele kenmerken bruggen slaan naar massabepalingen en dynamische vervormingen in de centrale regio’s van sterrenstelsels.
Theoretische exploraties van galactisch bewustzijn:conceptuele analyse van wat bewustzijn op macroniveau zou betekenen en welke criteria er zijn voor emergente cognitieve eigenschappen op stelselniveau (informatieverwerking, doelgerichtheid, zelfreferentiëring). Deze bespreking verkent verschillende definities van bewustzijn in een astro-filosofisch kader, zoals systeemniveau-informatie-integratie, causale effectiviteit binnen netwerken, en de mate waarin zelfbewuste monitoring of aanpassingsvermogen mogelijk resembleert aan cognitieve competenties. Er wordt kritisch gekeken naar de grenzen van antropomorfisme en naar hoe emergente eigenschappen kunnen voortkomen uit complexe, niet-lineaire interacties tussen duizenden tot miljarden sterren, gasdumps en donkere materie. Daarnaast worden theoretische modellen vergeleken die proxies voor bewustzijn voorstellen—bijvoorbeeld informatieve efficiëntie, robuuste netwerkdynamiek en adaptieve feedback—om te beoordelen of en hoe zulke proxies betekenisvol kunnen zijn in een astro-fysische context.
Kritische evaluatie van bewijsbarrières:waarom direct bewijs voor galactisch bewustzijn ontbreekt en welke toetsbare voorspellingen kunnen voortkomen uit beide concepten. Deze sectie onderzoekt epistemologische belemmeringen, technische beperkingen van meetinstrumenten, en de interpretatieve valkuilen bij het koppelen van fysische waarnemingen aan conceptuele eigenschappen zoals bewustzijn. Voorstellen voor toetsbare hypothesen zijn onder meer specifieke signaturen in emissie-variabiliteit, correlaties tussen SMBH-activiteit en grootschalige netwerk-eigenschappen, en prediction tables voor de evolutie van star-formation en kinematiek onder uiteenlopende scenario’s van feedback.
Synthetische vergelijking van scenario’s:wat betekenen SMBH-gedreven feedback en mogelijke emergente netwerkeigenschappen voor de evolutie van sterrenstelsels en de kosmische structuur? Tot slot worden gecombineerde scenario’s tegen elkaar afgewogen met oog voor consistente voorspellingen over lange-termijn evolutie, inclusief de invloed van SMBH-gestuurde uitbarstingen op gasontgassing, stervorming en de vorming van structurele kenmerken op galactisch en kosmisch niveau.
Een oranje ring tegen een zwarte achtergrond. Afbeelding van het zwarte gat in het centrum van M87, vastgelegd door de Event Horizon Telescope.
Credit: EHT Collaboration
Supermassive black holes: het dominante fysieke raamwerk
1. Observatie en dynamiek:
SMBH’s bevinden zich in het hart van vrijwel alle grote stelsels, waar ze een centrale rol spelen in de dynamiek van sterren, gas en donkere materie. Hun aanwezigheid manifesteert zich niet alleen door de extreem hoge masses, maar ook via hun impact op de kinematiek van de omliggende bulge en kernregionen.
De massaratio SMBH/stelselmassa vertoont sterke correlaties, zoals de M-sigma-relatie en de M–L-relatie, die suggereren dat de vorming en groeiprocessen van de centrale BH nauw verweven zijn met de evolutie van de halo, de bulge-structuur en de centrale kern van het stelsel.
Accretiekanalen, zoals koude gasinspiratie, fusie- en mergerscenario’s, en instroming van materie uit de kernen van kleinere satellietstelsels, leiden tot perioden van krachtige AGN-activiteit. Tijdens deze fasen wordt energie en impuls in het omringende gas gestoten, wat resulteert in uitbarstingen, jets en winds die de gasreserve van het stelsel kunnen verminderen of herverdelen.
Deze processen beïnvloeden de stervorming: de uitgestoten of verplaatste gassilos kunnen toekomstige stervorming remmen (quenching) of juist herschikken zodat de star-formation een andere ruimtelijke verdeling krijgt.
2. Mechanistische impact op galactische evolutie:
De feedbackmechanismen van SMBH’s leveren een directe, plausibele verklaring voor empirische observaties van kwenching en de gereguleerde stervorming in verschillende fasen van galaxy evolution.
Door energie en momentum aan het interstellair medium te leveren, moduleren SMBH’s de temperatuur en dichtheid van het gas, wat bepalend is voor de mate waarin gas op koude toestanden kan verzachten tot stervorming.
Deze feedback draagt bij aan de vorming van bulges en de morphologische diversiteit van stelsels: centrale kernen kunnen structuur met zich meebrengen die de algehele stelselkern overspannen, wat leidt tot de overgang tussen schijfachtige en bulge-gedomineerde morfologieën.
De relatie tussen SMBH-activiteit en galactische omgeving (bijv. clusters versus veldstelsels) laat zien hoe omgevingsfactoren invloed uitoefenen op accretiekanalen en daaropvolgende feedback.
3. Theoretische limitaties en open vragen:
Hoewel SMBH’s de centrale motor zijn in moderne galactische evolutietheorieën, blijven er belangrijke vragen bestaan over de exacte accretierates in verschillende omgevingen, zoals quenched versus actief stapelbare stelsels en bij verschillende gastemperaturen.
De tijdsafhankelijke en schaalafhankelijke consequenties voor galactische structuren zijn nog onderwerp van debat: hoe snel verandert de bulge-ontwikkeling onder invloed van SMBH-feedback, en welke rollen spelen mergende BH’s?
Details van donkere materie-interacties met baryonen op kiloparsecschaal blijven onzeker: hoe beïnvloeden donkere materiehalos de dissipatieve processen rond de centrale BH en welke rol spelen ze bij het transport van gas naar de BH?
Open vragen in de theorie betreffen onder meer de precieze balans tussen cooling, heating, en outflows, evenals de nuance van de M-sigma-relatie bij verschillende soorten stelsels en in verschillende kosmische tijdsperioden.
Galactisch bewustzijn: conceptuele mogelijkheden en uitdagingen
Wat zou “galactisch bewustzijn” impliceren? Als we bewustzijn definiëren als een systeem dat informatie organiseert, doelgericht gedrag vertoont en adaptief leert op grote schaal, dan zouden netwerken en processen in een galactische context in potentie aan onderdelen van deze criteria kunnen voldoen. Denk bijvoorbeeld aan grootschalige informatieverwerking in gas- en stofwolken, magnetische velden, stervorming, supernova-omzetten en de dynamiek van sterrenstelsels. In zo’n visie zouden patronen van coherente activiteit, feedbacklussen, en adaptieve respons op externe prikkels mogelijk als indicatoren kunnen worden opgevat. Toch ontbreekt er een breed gedragen consensus over concrete, toetsbare criteria die onafhankelijk zijn van menselijke meta-interpretaties en antropomorfe intuïties. De vraag is: welke specifieke operationele definities laten we gelden om te bepalen wanneer een astrofaal systeem “bewust” handelt of “bewuste” kenmerken vertoont?
Falsifieerbaarheid en wetenschappelijke status: een centrale uitdaging voor het galactisch bewustzijn-model is operationalisatie. Zonder duidelijke experimentele voorspellingen die toetsbaar zijn met de huidige of toekomstige technologieën, blijft het een metaforische of filosofische constructie in plaats van een robuuste empirisch-getoetste theorie. Wetenschap streeft naar uitsluitende of bevestigende bewijzen via meetbare correlaties, voorspellende hypotheses en reproduceerbare bevindingen. In het geval van galactisch bewustzijn bestaan die elementen nog niet of nauwelijks: wat zou bijvoorbeeld een experimentele proef zijn die onderscheid maakt tussen een echt “bewust” netwerk en een complex maar onbewust systeem? Het gebrek aan eenduidige meetbare indicatoren zoals intentie, flexibiliteit onder onbekende omstandigheden, of zelfreflectie plaatst het onderwerp in een gebied van speculatie en interpretatieve plausibiliteit eerder dan in strafbare wetenschappelijke status.
Mogelijke raakvlakken en analogieën: ondanks de beperkingen bieden emergente eigenschappen in complexiteitstheorie en netwerktheorie wel boeiende analogieën die kunnen helpen om galactische dynamiek beter te begrijpen, zonder noodzakelijkerwijs te suggereren dat een bewuste entiteit aanwezig is. Zo kunnen informatieverwerkende processen in gas- en stofomzetten, energietransfers in sterrenrijtsystemen, en de interactie tussen verschillende subsystemen thema’s oproepen die verwant zijn aan cognitieve functies zoals patroonherkenning, aanklampende feedback en adaptieve strategieën. Een constructieve benadering is dan om deze zoölogie van processen te verkennen als metaforische modellen die wetenschappelijke heuristieken kunnen bieden, zonder dat men automatisch aan een bewustheidsstatus hoeft te twijfelen.
Concluderend kunnen we zeggen dat het idee van galactisch bewustzijn uitnodigt tot verdiepende conceptuele verkenning en interdisciplinair denken, maar dat concrete, toetsbare wetenschappelijke basis en duidelijke operationalisatie cruciaal blijven om het als een geldige theorie binnen de moderne fysica en astronomie te plaatsen.
Oranje en gele cirkel die de magnetische velden van een zwart gat aangeeft. Een weergave van het superzware zwarte gat M87 in gepolariseerd licht. De lijnen markeren de polarisatierichting, die verband houdt met het magnetische veld rond de schaduw van het zwarte gat.
Bron: EHT Collaboration
Kritische evaluatie en synthese
Empirische sterkte van SMBH-dominantie:de voornaamste wetenschappelijke steun blijft de directe en indirecte bewijslagen voor SMBH-gedreven dynamiek en feedback, die aansluiten op een brede en geconsolideerde waarnemingsbasis van galactische evolutie. De waarnemingen tonen dat supermassive black holes nauw verbonden is met centrale sterrenbol en gas-yield, en dat hun activiteit invloed heeft op de temperatuur, druk en akoestische omstandigheden van het omringende gas. Dit vertaalt zich in regie over de stervorming, de marginale gasopbouw in de bulge en de vorming van centrale structuren zoals kern-collapse en mogelijk een transportpad voor interstellair materiaal. De plausibele causaliteit tussen SMBH-activiteiten en de regulatorische mechanismen van stervorming, gasdoorschiet, massa- en angular momentum-verdeling, alsook de ontwikkeling van de centrale potentiaal, maakt SMBH’s een vrijwel onmisbaar komponent in hedendaagse galactische theorieën. Toch blijft de inschatting van de exacte mechanismen en tijdsschalen een onderwerp van debat, mede omdat waarnemingen vaak complexe, multi-component systemen bestrijken met verschillende vrijheidsgraden en degeneratie van signaal.
Beoordeling van galactisch bewustzijn:hoewel filosofisch interessant en soms paradoxaal intrigerend, ontbreekt er solide empirische ondersteuning en een gemeenschappelijke operationele definitie. De conceptuele basis van galactisch bewustzijn is nog niet verankerd in meetbare parameters die consistent kunnen worden toegepast over verschillende massa- en evolutiefases van sterrenstelsels. Dit maakt het op dit moment een minder robuuste wetenschappelijke hypothese vergeleken met SMBH-dynamiek, aangezien de koppeling tussen cognitieve of bewuste-like eigenschappen en galactische processen moeilijk te operationaliseren is en mogelijk afhankelijk blijft van interpretatieve modellen. Desondanks kan het idee richting geven aan het onderzoeken van_Info-theoretische representaties van waarneming en meaning, en het stimuleren van innovatieve denkrichtingen over emergente eigenschappen in astrale systemen.
Mogelijke synergieën:het is denkbaar dat toekomstige werkgebieden zoals high-resolution simulaties van galactische netwerken, gekoppeld met informatie-theoretische analyse van grote kosmische systemen, kunnen leiden tot nieuwe inzichten die zowel de rol van SMBH’s verder verhelderen als de grenzen van emergente eigenschappen in kosmische netwerken beter afbakenen. Deze gecombineerde aanpak kan helpen bij het definiëren van toetsbare voorspellingen, het identificeren van sleutelmomenten in de evolutie van stelsels, en het verminderen van onzekerheden rondom feedbackmechanismen. Een integratieve strategie, waarbij observaties, simulaties en theorie met elkaar worden verbonden, kan zo de betrouwbaarheid en generaliseerbaarheid van conclusies verhogen.
Implicaties voor de astronomie en de filosofie
1. Voor de astronomie
Inzicht in SMBH-gedreven processen is cruciaal voor het begrip van de evolutie van sterrenstelsels en de structuur van het universum. Supermassale zwarte gaten spelen een sleutelrol bij de energie- en materie-uitwisseling in galactische nuclei, wat op grote schaal invloed heeft op de vorming en het gedrag van sterrenstelsels.
Het ontwikkelen van betere modellen van accretie en feedback helpt bij het verklaren van de variatie in stervormingsraten doorheen de tijd en bij het begrijpen van de morphologie van zowel spiraalachtige als ellipitische stelsels. Aandacht voor verschillende accretietypen (radiatieve efficiëntie, kinetische feedback, jets) levert nuance op in hoe gas wordt heiß gemaakt of uitgestoten, en hoe dat het interstellaire medium beïnvloedt.
Verdere precisie in simulaties en waarnemingen—waarin rekening wordt gehouden met AGN-quenchen, uitputting van gasreservoirs, en de interactie tussen SMBH-uitbarstingen en omgeving—stelt ons in staat om de tijdlijnen van galactische omzettingen beter te reconstrueren.
De combinatie van multi-wavelength observaties (radio, optisch, infrarood, X-ray) en mogelijk toekomstige gravitational wave- en neutrino-detecties biedt een geïntegreerde kijk op SMBH-gedreven fenomenen, waardoor men deketen van causale relaties tussen centrale engine en galactische eigenschappen beter kan volgen.
Deze inzichten versterken ook het begrip van de kosmische structuur en de rol van feedback in de vorming van grote schaalstructuren, zoals radius-banden, halo- en clusteromgevingen, en helpen de discrepanties tussen waargenomen massiverhoudingen en theoretische voorspellingen te verduidelijken. Zo kunnen we bijvoorbeeld verklaren waarom sommige stelsels actief blijven terwijl anderen snel afkoelen en stervorming stoppen.
2. Voor de filosofie van de geest en de complexe systemen
Galactische bewustzijn-discussies brengen fundamentele vragen naar voren over wat bewustzijn werkelijk is en welke niveaus van complexiteit nodig zijn voor emergentie. Ideeën uit de sterrenkunde kunnen verhelderen hoe niet-intuïtieve, grootschalige emergente eigenschappen ontstaan uit simpele fundamentele regels, en welke rol informatieverwerking speelt in systemen op kosmische schaal.
Dit bevordert reflectie op de grenzen van onze definities van bewustzijn, ervaring en subjectiviteit, en op hoe wetenschappers concepten gebruiken en herdefiniëren bij fenomenen die buiten de traditionele kaders vallen. Het kan leiden tot een beter begrip van difference between mechanistische functionaliteit en bewuste ervaring, en tot een kritische blik op antropocentrische aannames.
Bovendien raken discussies over emergentie en complexiteit aan epistemologie en retoriek: hoe formuleren wetenschappers modellen en verklaringen voor verschijnselen die niet direct waarneembaar zijn als ‘bewust’ maar wel invloedrijk op systeemgedrag? Dit draagt bij aan een bredere evaluatie van wetenschappelijke methoden, schemata, en de vertekenen van theorieën.
Ten slotte kunnen deze gedachte-exercities aandacht vragen voor ethische overwegingen rond het bestuderen van intelligente systemen, zowel in technologische als in kosmische context, en stimuleren ze een reflexieve houding ten aanzien van onze eigen plaats in het universum en de aard van menselijke kennis.
Toekomstig onderzoek
Empirische richting: meer gerichte en systematische observaties naar SMBH-accresctie- en feedbackprocessen, evenals verbeterde directe beelden van de onmiddellijke omgeving van superzware zwarte gaten (SMBH’s). Dit omvat lange-termijn monitoring van AGN-variabiliteit om patronen, episodieën en dramatische schommelingen in accretie en uitgaande kracht beter te begrijpen. Daarnaast is behoefte aan high-resolution spectroscopie en tijdreeksen die de dynamiek van de accretieschijven, jet- en outflow-structuren, en de interacties met omringende interstellaire materie nauwgezet traceren. Nieuwe instrumenten en telescoopfaciliteiten, zoals aanvullende interferometrische kernwaarnemingen, hoogresolutiedetectie van röntgen- en radiosignalen, en lange-baseline optische/near-infrarood observaties, kunnen deze data leveren. Het doel is om de onderliggende fasen van massaoverdracht, de rol van magnetische velden, viscousiteit in accretieschijven, en de mechanismen van terugkoppeling (feedback) met de gastheergalaxie in kaart te brengen. Verdere inspanningen zijn nodig voor statistische studies die variabiliteit over verschillende schalen koppelen aan de fysische omstandigheden in de centrale regio’s, evenals vergelijkende analyses tussen verschillende soorten AGN en hun omgevingen. Zo kunnen we empirisch vaststellen welke factoren de efficiëntie van accretie begrenzen en welke boodschappen de jet- en verwarmingsprocessen leveren aan de omliggende interstellare medium.
Theoretische richting: inzet op geavanceerde hydrodynamische en magneto-hydrodynamische (MHD) simulaties die SMBH-activiteit naadloos integreren met bredere galactische evolie processen, inclusief de rol van turbulentie, velden en stralingsdrukken. Daarnaast zijn netwerktheoretische en informatieverwerkingsbenaderingen van toepassing op kosmische omgevingen, waarbij informatiefluxen tussen de centrale engine, de accretieschijven, jets en de halo’s worden gemodelleerd. Door dergelijke geïntegreerde modellen kunnen we voorspellingen genereren die direct toetsbaar zijn aan observaties, zoals de relatie tussen accretie-snelheid, feedback-energie en de vorm en evolutie van de gastrolstructuren in de gastheergalaxie. Het combineren van simulaties op verschillende schalen—van gebeurtenisperspectief in de nabijheid van het SMBH tot galactische schaal—kan helpen om de kloof tussen feit en hypothese te verkleinen en om de evolutie van SMBH-activiteiten in een kosmologische context te plaatsen. Daarnaast zijn probabilistische en statistische methoden nodig om onzekerheden in modellering en observaties te beheersen en om robuuste constraint-sets te genereren voor theorieën over accretie en feedback.
Filosofische richting:verduidelijking van definities rond “bewustzijn” en de plaats daarvan in de natuurwetenschap, met aandacht voor empirische toetsbaarheid en falsifieerbare criteria. Het identificeren van criteria voor emergente eigenschappen op kosmologische schaal, die mogelijk metafysische overwegingen raken, kan bijdragen aan een betere scheiding tussen metafysica en natuurwetenschap. Dit vereist reflectie op wat als “empirisch verifieerbaar” en “railbaar via observaties” kan worden beschouwd in systemen met extreme fysica en lange tijdsschalen. Het doel is een helder kader waarin wetenschappelijk onderzoek naar complexe kosmische systemen zowel conceptueel als methodologisch stevig staat, zonder essentiële fysische inzichten uit te sluiten.
Conclusie
Op basis van de huidige stand van kennis wordt de hypothese dat SMBH’s een centrale, fysiek onderliggende rol spelen in de evolutie van sterrenstelsels als de meest robuuste en wetenschappelijk onderbouwde lens gezien. Het concept van galactisch bewustzijn blijft interessant als filosofische en theoretische verbeelding, maar mist op dit moment de empirische basis en operationele definities die nodig zijn voor wetenschappelijke validatie. Desalniettemin blijft het verkennen van emergente eigenschappen in complexe kosmische netwerken waardevol voor het begrip van systeemsamenhang en kan het leiden tot innovatieve inzichten in de manier waarop informatie en energie in het universum door netwerken stromen. De toekomstige inspanningen in zowel observationeel als theoretisch onderzoek zullen ongetwijfeld het verhaal van SMBH’s en mogelijk de fascinerende gedachte van galactisch bewustzijn verder aanscherpen.
Scientists believe that one of the most effective ways to explore Mars is with robots—tumbleweeds. These vehicles resemble large mesh spheres and do not require very powerful engines. Instead, they are powered by wind energy. Recently, engineers have confirmed the effectiveness of this concept.
One of the critical points in the development of Mars rovers is energy sources. They have to ensure the autonomy of the research device for as long as possible, otherwise all attempts to scale automated systems are pointless. Recently, at a meeting of the Europlanet Science Congress and the Department of Planetary Sciences, engineers from Tumbleweed discussed a new way of exploring Mars.
At its core is the idea of a swarm of spherical rovers. Tumbleweed is a special type of shrub that grows in many arid regions of the Earth. When the dry season arrives, their above-ground part, resembling a ball of twigs, dries out and rolls across the desert under the influence of the wind, traveling many kilometers before spilling its seeds.
This is precisely the principle that Tumbleweed decided to use in its robots. They resemble 5-meter balls made of metal mesh, with a core containing equipment in the center. They were first introduced in July this year.
Test results
To be precise, the company has so far presented prototypes with diameters of 30, 40, and 50 cm. However, they have already proven their effectiveness. The fact is that the main advantage of such a design is the absence of a powerful energy source. Instead, it is moved by the wind until the vehicle stops moving and switches to stationary research station mode.
The only problem is the wind itself. On Mars, its speed can reach 9-10 m/s. However, the atmosphere is extremely thin, so its actual strength is significantly lower than on Earth. However, developers have already proven that this is not an obstacle to their work.
They have already confirmed this by testing them in a wind tunnel, which reproduced Martian pressure and the corresponding wind speed. Under these conditions, they were able to overcome a slope corresponding to 30° on Mars.
Test results confirm that they are capable of moving at speeds of up to 10 m/s and covering a distance of 422 km in 100 Martian sol. Overall, the developers expect that under favorable conditions, Tumbleweed could travel 2,800 km across the surface of Mars.
That base will likely be nuclear-powered, capable of housing astronauts on a permanent basis, and built out of the materials found on the lunar surface.
Asked what success would look like for NASA in a decade, Mr Duffy said: 'We are going to have sustained human life on the moon.' This comes as the space agency prepares for its first missions to the lunar surface since the end of the Apollo programme
Acting NASA director Sean Duffy (pictured) has said the space agency will build a 'village' on the moon by 2035
This year, the theme of the IAC conference was 'Sustainable Space: Resilient Earth', which Mr Duffy took to mean how NASA could sustain life in space.
While the heads of the European, Canadian, and Japanese space agencies talked up how their satellites were helping climate research, NASA focused exclusively on space exploration.
In addition to revealing his plans for the moon, Mr Duffy also made bold claims about the US's ambitions for Mars.
Asked what success looks like for NASA in a decade, Mr Duffy said that the agency would have 'made leaps and bounds on our mission to get to Mars.'
He also predicted that the US would be 'on the cusp of putting human boots on Mars.'
During the Artemis II mission next February, astronauts will test the Space Launch System rocket and Orion spacecraft that will eventually carry humans to the moon.
Over 10 days, the crew will travel 5,700 miles (9,200 km) past the moon, testing the onboard systems and gathering data on their bodies' reactions, before returning to Earth.
Sean Duffy, NASA administrator, has revealed plans to build a sustainable and permanent outpost on the lunar surface within the next decade (AI image)
As early as February 2026, NASA will launch the Artemis II mission and send four astronauts on a mission to orbit the moon. Their goal is to test the equipment and systems that will be used in a lunar landing scheduled for mid-2027
NASA's Artemis Mission Timeline
Artemis I
- Uncrewed lunar flight test
- Launched November, 2022
Artemis II
- Crewed Lunar Flyby
- Launch planned for April, 2026
Artemis III
- Crewed Surface Landing
- Launch planned for mid-2027
Artemis IV
- Building First Lunar Space Station
- Launch targeting September 2028
But the big test for NASA will come in mid-2027 with the launch of Artemis III, which plans to land two astronauts at a site near the moon's south pole.
Unlike the Apollo missions, which spent up to 22 hours on the lunar surface, Artemis III will require astronauts to live on the moon for around seven days.
The data they collect on the geology and conditions around the South Pole will all be used to prepare for the ultimate goal of constructing a permanent base on the moon.
Although the technical details are still unclear, what that lunar base might look like is starting to take shape.
That is enough energy to power a lunar base through the 14-day lunar nights, during which solar panels will be ineffective.
This comes after NASA issued a directive calling for the USA to become the first nation to deploy a nuclear reactor on the moon to support a permanent lunar settlement. Pictured: A NASA rendering of a potential lunar nuclear reactor design
Any reactor that proves itself useful on the moon will also be valuable for future Martian exploration missions, where the extreme distances require humans to stay on the surface for long periods.
NASA has also begun to research the materials which could be used to create the structure of the base.
In a statement, NASA officials said one option for building the moon base could be 'using the microgravity environment to mix lunar soil with other materials to make cement and build habitable structures on the moon.'
If that proves viable, the base could be 3D printed by machines sent to the moon on rockets, using only the lunar soil and water found at the South Pole site.
Despite fears that President Donald Trump would lose interest in missions to the moon, under Mr Duffy, NASA has taken an increasingly bold stance on lunar exploration.
In a recent statement, Mr Duffy said that NASA would 'win the second space race' against China through the Artemis programme.
Dr Duffy said: 'We're going back to the Moon, and this time, when we plant our flag, we stay.'
This NASA photo taken on July 16, 1969 shows the huge, 363ft tall Apollo 11 rocket launched from pad 39A at Kennedy Space Center
Apollo was the NASA programme that launched in 1961 and got the first man on the moon eight years later.
The first four flights tested the equipment for the Apollo Program and six of the other seven flights managed to land on the moon.
The first manned mission to the moon was Apollo 8 which circled around it on Christmas Eve in 1968 but did not land.
The crew of Apollo 9 spent ten days orbiting Earth and completed the first manned flight of the lunar module – the section of the Apollo rocket that would later land Neil Armstrong on the moon.
The Apollo 11 mission was the first one to land on the lunar surface on July 20, 1969.
The capsule landed on the Sea of Tranquillity, carrying mission commander Armstrong and pilot Buzz Aldrin.
Armstrong and Aldrin walked on the lunar surface while Michael Collins remained in orbit around the moon.
When Armstrong became the first person to walk on the moon, he said, 'That's one small step for (a) man; one giant leap for mankind.'
Apollo 12 landed later that year on November 19 on the Ocean of Storms.
Apollo 13 was to be the third mission to land on the moon, but just under 56 hours into flight, an oxygen tank explosion forced the crew to cancel the lunar landing and move into the Aquarius lunar module to return back to Earth.
Apollo 15 was the ninth manned lunar mission in the Apollo space program, and considered at the time the most successful manned space flight up to that moment because of its long duration and greater emphasis on scientific exploration than had been possible on previous missions.
The last Apollo moon landing happened in 1972 after a total of 12 astronauts had touched down on the lunar surface.
Astronaut Edwin 'Buzz' Aldrin is pictured unpacking experiments from the lunar module on the moon during the Apollo 11 mission. He was photographed by Apollo 11 commander Neil Armstrong on July 20, 1969
Mars is the most studied planet in the Solar System after Earth. Right now, there are six spacecraft belonging to four different space agencies operating in its orbit. They are accompanied by two rovers and a drone that has been repurposed as an autonomous weather station. We will tell you about these spacecraft, their main tasks, and discoveries.
Spacecraft exploring Mars (concept). Source: NASA
NASA’s Martian armada
Of all the space agencies, NASA has the largest Martian armada. It consists of three orbital and three ground-based vehicles.
The oldest of these is Mars Odyssey, launched back in 2001 (hence its name, which was given in honor of “2001: A Space Odyssey”). It is the longest-running Martian spacecraft in history, and of all interplanetary missions, it is second only to the legendary Voyager probes in this respect.
Mars Odyssey as imagined by an artist. Source: NASA
The main objective of the Mars Odyssey was to map the surface of Mars. Over the years, the spacecraft took nearly 1.5 million images of the Red Planet in the visible and infrared ranges, compiling a global map. This map was later used to select landing sites for subsequent Mars missions. Mars Odyssey also discovered large reserves of water ice beneath the surface of the Red Planet, collected data on the radiation environment in its vicinity, studied seasonal changes in the polar caps, and photographed Phobos.
Of course, such a long stay in space could not fail to affect the technical condition of the Mars Odyssey. One of its main scientific instruments has failed, and its fuel reserves are almost exhausted. According to engineers’ estimates, they will last until the end of this year or the beginning of next year. However, Mars Odyssey may cease operations earlier if NASA’s 2026 budget proposal, which calls for the early termination of the mission, is approved.
The Mars Reconnaissance Orbiter (MRO) is probably one of the most famous Mars explorers in history. It has been orbiting Mars since 2006. During this time, it has transmitted over 400 terabytes of data to Earth, including millions of images of the planet’s surface.
MRO as imagined by an artist. Source: NASA/JPL-Caltech
The MRO data has significantly expanded our knowledge of Mars. It has compiled the most detailed map of the Red Planet’s surface and discovered many geological formations that have provided insight into its past. Its data has been and continues to be used to search for landing sites for Mars expeditions. It is also actively used as a space “detective.” MRO images have revealed the mystery of the disappearance of the Beagle 2 probe and the fate of the Schiaparelli landing platform. In addition, it regularly photographs new craters formed on Mars as a result of asteroid impacts.
Finally, MRO plays a key role in maintaining communication with NASA’s Mars rovers, relaying their data back to Earth. It will likely continue to do so for a long time to come. According to the latest estimates, MRO has enough fuel reserves to continue operating until the middle of the next decade.
The MAVEN spacecraft is NASA’s newest Mars explorer. It was launched in 2013. MAVEN is used to study the Martian atmosphere. Over the years, it has measured the rate at which the atmosphere is leaking into space. MAVEN has also studied its interaction with the solar wind, the tail of comet C/2013 A1, and measured radiation levels in the vicinity of Mars. Like MRO, MAVEN also plays a very important role in communicating with Mars rovers, relaying their data back to Earth.
Artist’s impression of the MAVEN spacecraft. Source: NASA
Like Mars Odyssey, MAVEN is now under threat of cancellation due to the White House’s proposed new NASA budget. But space enthusiasts hope that the mission can be saved. Its premature closure would deal a significant blow to American plans for Mars exploration.
Mars rovers and a drone that became a weather station
In addition to three orbital spacecraft, NASA also has two rovers operating on the surface of the Red Planet. The first is Curiosity, which landed at the end of 2012. The rover is conducting research in Gale Crater, at the bottom of which there was once a lake.
“Self-Portrait” taken by the American Mars rover Curiosity on June 15, 2018, in the midst of a global dust storm. Source: NASA/JPL-Caltech/MSSS
During its mission, Curiosity has traveled over 35 km. This has affected its condition. Some of the rover’s wheels have developed holes, and its radioisotope thermoelectric generator now produces much less energy than it did during landing. Nevertheless, the rover is still successfully performing its tasks, and NASA hopes that it will continue to operate for many years to come.
The Perseverance rover, which landed in February 2021, was based on Curiosity but has a set of more advanced scientific instruments. These have enabled it to make a number of high-profile discoveries, including the recent discovery of biosignatures. The rover is also collecting soil samples, which may be delivered to Earth in the future by a special mission.
Perseverance landing. Source: NASA/JPL-Caltech
Perseverance landed on Mars together with the Ingenuity helicopter drone. In 2024, it crashed and lost its ability to fly. After that, engineers switched it to autonomous weather station mode. It is assumed that it wakes up every day, takes pictures of the surface, and collects temperature data. Whether this is true or not is impossible to verify at this time: Perseverance has moved too far away from the drone to maintain communication with it. However, NASA engineers believe that Ingenuity will be able to operate in this mode for about 20 years.
In the future, the drone may be selected for a specific mission. The data stored inside it will not only benefit developers of Martian technology but will also allow scientists to gain a long-term understanding of Martian weather conditions and dust movement.
European Mars researchers
The European Space Agency boasts two spacecraft operating in Martian orbit. The first is Mars Express, which was launched back in 2003 and is second only to Mars Odysseus in terms of service life.
Mars Express spacecraft (concept). Source: ESA
Despite its considerable age, Mars Express continues to delight us regularly with various discoveries. Many of these have been made possible by the radar on board. Analysis of its data, in particular, has revealed signs of liquid water in the planet’s interior. Mars Express also photographed the famous “Face on Mars” in high resolution. To the disappointment of all ufologists, it turned out to be not an alien artifact, but merely a rock formation.
The TGO spacecraft has been orbiting Mars since 2016. Its main task is to study the planet’s atmosphere and search for rare compounds that indicate the possibility of life. The spacecraft has also compiled a global map that allows scientists to estimate the percentage of water ice in the subsurface layers of Mars.
Artist’s impression of the Trace Gas Orbiter (TGO). Source: ESA
Initially, it was assumed that TGO would work in tandem with the Rosalind Franklin rover. However, due to Russia’s full-scale invasion of Ukraine and the breakdown of cooperation between ESA and Roscosmos, the latter remained on Earth. The rover may be launched in 2028, but this date is still subject to change.
New Mars explorers
NASA and ESA are the “old hands” in the study of Mars. However, in recent years, they have faced competition from new space powers that have launched their own Mars missions. One of them is the UAE. In 2020, it sent the first Arab interplanetary mission in history to Mars, called Emirates Mars Mission.
The Emirates Mars Mission spacecraft as imagined by an artist. Source: UAE Space Agency
The key scientific goal of this mission is to create a complete picture of the Martian atmosphere. The spacecraft will study how the weather changes throughout the local day and year, investigate meteorological events in the lower atmosphere, such as dust storms, and observe the climate in different geographical regions of Mars. Based on images from the Emirates Mars Mission, scientists have also created a three-dimensional map of the planet’s surface.
The Chinese Tianwen-1 mission was also launched in 2020. It was the first step in China’s ambitious program to conquer the Red Planet. The main task of the spacecraft is to conduct a global survey of Mars, including mapping the morphology and geological structure of the planet, studying the characteristics of the surface layer and the distribution of water ice in it, analyzing the composition of surface materials, measuring the parameters of the planet’s ionosphere, electromagnetic and gravitational fields, and obtaining information about the climate of Mars.
Selfie taken by Tianwen-1. Source: CNSA
The tasks assigned to Tianwen-1 appear to be quite ambitious. However, this is only a prelude to the much more complex and costly Tianwen-3 mission. As part of this mission, China plans to bring samples of Martian soil to Earth for the first time in history. At present, the launch of Tianwen-3 is scheduled for 2028.
One of the main mysteries that scientists want to solve in the Solar System is the existence of life on Mars – today or in the past. But why do scientists think there should be something there at all? The reasons for this are quite complex and interesting, because history and biology, physics and chemistry are intertwined.
Why are people searching for life on Mars? Source: www.thenewatlantis.com
Life on Mars and beyond
One of the topics that inevitably arises when discussing space exploration is life on Mars. One of the largest space programs currently being implemented by NASA is dedicated to discovering whether life exists there now or may have existed in the past. But why do scientists think that something can be found on Mars? Why not on some other planet?
The reason for this is primarily historical. In general, the idea that there may be living beings on other planets is relatively new. Back in the early 17th century, this statement, made by Giordano Bruno, was used to prove that he was a heretic. And when scientists finally got the chance to speak more freely, they immediately started talking about the possibility of life on absolutely all celestial bodies.
For example, intelligent beings were sought for quite a long time (and even claimed to have been found) on the Moon. Today, we could immediately come up with a whole bunch of scientific arguments, but it is worth remembering that in the 18th century, people were just beginning to learn about things such as the presence of oxygen in the atmosphere and its role in biological processes.
Life on the Moon, as imagined in the 19th century. Source: Wikipedia
Gradually, scientists realized how much life depends on the availability of certain substances and physical conditions, but even in the 19th century, Mars seemed to be a planet with changing seasons and fairly large bodies of water.
However, at the beginning of the 20th century, scientists realized that Martian canals were just an optical illusion, and that Mars itself was, at best, a dry steppe and, at worst, bare rock. However, it was at this time that the popularization of science and science fiction was born, so the public continued to believe in the existence of life on Mars.
Everything finally fell into place when, in 1965, Mariner 4 flew past Mars and photographed it from close range for the first time. Scientists were presented with a planet with a very thin atmosphere unsuitable for breathing, a weak magnetic field, and no trace of water or green foliage. So why have we not yet decided, once and for all, that there is no life there?
The surface of Mars does not resemble a place where life exists. Source: phys.org
What do you need to live?
One of the reasons why people are still searching for life on Mars is habit. People have believed for so long that there is a biosphere there that it is not so easy to give up on this idea. However, there are also purely scientific reasons not to stop searching.
First of all, we must remember what life is. Its general definition is rather vague, but it is quite possible to use the description of what it is on Earth. Life is a set of chemical processes involving complex carbon compounds that occur in an aquatic environment and ensure the ability of biological systems to reproduce themselves. Most often, these processes occur with the participation of oxygen.
It follows that the two main factors determining the possibility of life are the presence of carbon and water. Carbon is not a problem on Mars. The entire atmosphere consists of carbon dioxide, i.e., carbon monoxide. And there is plenty of carbonate rock on the surface.
The tricarboxylic acid cycle is what life really is. Source: Wikipedia
Water is not so simple. There is a lot of it in the form of ice on the surface of Mars, mainly concentrated in the ice caps at the poles, although it can also be found beneath the surface in temperate latitudes. However, for life to exist, water must be in a liquid state. On Mars, temperatures range from +20°C at the equator during the day to -153°C at the poles at night.
That is, at least somewhere it should be in a liquid state, but that would be true for Earth. On Mars, with its pressure 170 times lower than Earth’s, ice immediately turns into a gaseous state.
Oxygen is also essential for life, and there is plenty of it on Mars. It is the second component of carbon dioxide in the planet’s atmosphere, and the famous red color of its surface is due to iron oxides.
The polar cap of Mars. Source: Wikipedia
Thus, all the components necessary for life exist on the surface of Mars, and this is what makes it one of the best targets for the search for life beyond Earth. If only this planet were a little warmer and its atmosphere had higher pressure…
The Past of Mars
There were such periods in the history of Mars. We are talking about the Noachian period, which began about 4.1 billion years ago and ended 3.8 billion years ago. During this time, Mars had a primitive atmosphere of hydrogen, which gradually changed to a fairly dense carbon dioxide atmosphere. Scientists have found numerous traces of volcanism, which enriched the planet’s gas envelope with substances that caused the greenhouse effect.
During this period, Mars’ climate was warm enough for water to flow on its surface. Scientists know this for sure because they have found numerous riverbeds and former lakes, and at their bottoms – clay and other rocks that can only form in conditions of constant water presence.
Ancient Mars. Source: Wikipedia
At the same time, the water was of very different quality. At least in the beginning, volcanic geysers with acidic water played a major role. Later, they were replaced by colder reservoirs. The entire northern basin of the planet was occupied by the ocean.
At the same time, the atmosphere remained oxygen-free. Therefore, multicellular animals could not exist on Mars, but various anaerobic microorganisms could. And it is precisely on the search for their remains that scientists have focused in recent decades.
If life once existed on Mars, then it must first be sought in the sediments of that era. Structures resembling bacteria have been found in a meteorite that was once part of the Red Planet. However, scientists are still not entirely sure about their identification.
The river delta in the Jezero crater. Source: www.duluthnewstribune.com
The greatest hopes for finding traces of life on Mars are pinned on samples collected in the Jezero crater by the Perseverance rover. These are mainly fossilized clays, and they are the most likely place where the remains of microorganisms, if they ever existed on Mars, could have survived to this day. It is expected that in the next decade, these samples will be delivered to Earth laboratories, where they can be thoroughly studied.
Life on Mars today
The very discovery of ancient microorganisms could be a real sensation. After all, it would mean that life is indeed widespread throughout the universe. But it would be even more exciting if some of these bacteria could be brought back to life.
This scenario is one of the most popular among horror movie writers. Because our imagination immediately conjures up images of humanity dying out from an unknown disease. These fears are based on the fact that our immune system will not be ready to fight them.
However, they forget that all past cases of deadly epidemics are associated with viruses and bacteria that had been spreading for a long time in other human populations and among species relatively close to us.
The natural smallpox virus and its relatives have been infecting living creatures on Earth for hundreds of thousands of years. Source: phys.org
Ancient Martian life did not have millions of years of evolution to adapt to existence inside terrestrial multicellular organisms. Of course, there is a chance that it poses a danger to Earthlings, which is why research must be conducted in compliance with all safety requirements. However, it is equally likely that Martian organisms themselves will need much greater isolation in order not to perish in the Earth’s environment.
However, no one expects to find signs of life that existed on Mars billions of years ago. But if much younger samples are found on Mars, everything may turn out differently.
It is believed that in the middle of the era following the Noachian and Hesperian periods, the planet’s climate began to change rapidly, and soon it became what we know today: cold, dry, and virtually devoid of atmosphere. However, almost since the visit of Mariner 4, there has been an opinion that the current state of Mars has not lasted for hundreds of millions of years, but is a relatively temporary phenomenon, only a few tens of thousands of years.
Dark marks on the tops of some craters suggest that water still occasionally flows on the surface of Mars. Source: phys.org
In particular, in recent years, its concept as a geologically dead planet has been significantly revised. Earthquakes recorded by the InSight device on the surface indicate that liquid magma is hidden somewhere in the depths. This means that volcanic eruptions and geysers are entirely possible. Traces of such activity have been observed over the last 50 million years.
So the main question of whether life on Mars is possible now depends not so much on the conditions there as on our knowledge of what conditions living organisms can withstand in general. Already today, we can name species that could exist on the Red Planet even under the conditions it has.
At the same time, “surviving now” does not mean “surviving for billions of years.” We still know too little about evolution to claim that extremophile bacteria could have emerged even if they never had ancestors living in much more comfortable conditions. Moreover, no one can claim that isolated populations preserved in Mars’ glaciers throughout its existence can ensure global evolution.
However, it is still worth searching for life on Mars.
The Artemis I spacecraft on approach to the Moon. Credit: NASA
NASA is preparing to send crewed missions to the Moon for the first time since the end of the Apollo Era over fifty years ago. With the success of Artemis I, which sent an uncrewed Orion spacecraft on a circumlunar flight and set a new distance record for a crew-capable spacecraft, NASA is gearing up for Artemis II. This mission, which NASA is now targeting for no sooner than February 5th, 2026 (and no later than April), will transport a four-person crew around the Moon without landing and return them home ten days later. The announcement was made during a news conference on September 23rdat NASA's Johnson Space Center (JSC).
The core and upper stage of the Space Launch System (SLS) that will launch the Artemis II mission were stacked between March and May 2025, while the solid rocket boosters were completed in February. The Orion spacecraft is in the final stages of preparation and will be integrated with the SLS later this year. In early 2026, the fully stacked rocket and spacecraft will roll out to their launch site at the Kennedy Space Center in preparation for their February launch window. After a "wet dress rehearsal," where the launch system will be fully-fuelled and a mock countdown conducted, the Artemis II mission will be ready for launch.
The Artemis II mission will evaluate all of the systems and mission architecture used to transport astronauts to the Moon with Artemis III. This mission is currently scheduled for no earlier than mid-2027 and will see two astronauts transfer to a Human Landing System (HLS) provided by SpaceX in lunar orbit, then descend to the surface. The entire mission is expected to last about 30 days and will be the first time astronauts have walked on the Moon since the Apollo 17 astronauts did in 1972.
Artemis II astronauts visit the Artemis launch team inside Firing Room 1 in the Launch Control Center at NASA's Kennedy Space Center in Florida.
Credit: NASA
However, during a meeting that took place on September 19th, members of the Aerospace Safety Advisory Panel (ASAP) expressed doubt that the Starship HLS will be ready in time. Paul Hill, the Former Director of Mission Operations at NASA JSC, summarized NASA's concerns, saying: "The HLS schedule is significantly challenged and, in our estimation, could be years late for a 2027 Artemis 3 moon landing." Another issue is the cryogenic propellant transfer, which SpaceX must successfully demonstrate to meet its contractual obligations.
Nevertheless, the ASAP members also expressed confidence in SpaceX's ability to deliver, citing their "high manufacturing" and "flight tempo."
In related news, NASA announced that the Artemis II crew had named their spacecraft "Integrity." The announcement was made at a news conference on September 24th, inside the Launch Control Center at NASA's Kennedy Space Center. According to a NASA statement:
The name Integrity embodies the foundation of trust, respect, candor, and humility across the crew and the many engineers, technicians, scientists, planners, and dreamers required for mission success. The name is also a nod to the extensive integrated effort – from the more than 300,000 spacecraft components to the thousands of people across the world – that must come together to venture to the Moon and back, inspire the world, and set course for a long-term presence at the Moon. Integrity is rooted in a shared core value of NASA, the agency's astronaut office, and the CSA (Canadian Space Agency).
During the ASAP meeting, the members also expressed concerns about the future of NASA's lunar exploration plans beyond Artemis III, describing it as "uncertain and a little murky." Nevertheless, the agency and the Artemis crew are prepped and on track to launch the Artemis II mission sometime next year. The success of this mission will usher in a new era of space exploration, paving the way for regular missions to the Moon and a "sustained program of lunar exploration and development."
Infrared image of Saturn taken by the JWST, showing Saturn's rings and three of its larger moons. Credit: NASA/ESA/CSA
The James Webb Space Telescope(JWST) has revealed some amazing things about the Universe. From the earliest galaxies and planet-forming disks to characterizing exoplanet atmospheres, there is virtually no corner of the cosmos that Webb has not observed in extremely high resolution. This includes the Solar System, where Webb has used its sophisticated infrared instruments and spectrometers to provide the most detailed images ever taken of Jupiter, Saturn, the ice giants, and smaller objects like Dimorphos and the latest cosmic interloper detected, 3I/ATLAS.
In arecent study, an international team of researchers presented data from Webb'sNear Infrared Spectrograph(NIRSpec), which was obtained during its first observations of Saturn's atmosphere in 2024. These observations revealed complex and mysterious things that have never been seen on any planet in the Solar System, including a series of dark, bead-like structures and an asymmetric star-shaped feature around Saturn's polar region.
The team was led by Professor Tom Stallard of the Department of Maths, Physics, and Electrical Engineering at Northumbria University, Newcastle. It consisted of 23 scientists from institutions across the UK, the US, and France. The results were presented at the 2025 Europlanet Science Congress Joint Meeting (EPSC-DPS2025) that took place from September 7th to 12th in Helsinki. Their findings were also detailed in a paper published on August 28th in the Geophysical Journal Letters.
Hubble image in ultraviolet light showing the most comprehensive picture of Saturn's northern aurora.
Credit: NASA/ESA
As indicated in both, astronomers have spent the past three decades studying thermalized emissions in Saturn's atmosphere caused by the positively charged molecule hydrogen-3 (H3+). These observations, conducted by ground-based and space-based telescopes, have used this molecule to explore the ionospheres of Saturn and the other gas and ice giants of the outer Solar System. However, these observations have reached a ceiling in recent decades due to atmospheric interference and the limits of existing instruments.
This changed with the deployment of the JWST, which has fundamentally revolutionized astronomers' understanding of the outer planets in the past three years. As Professor Stallard said in a University of Northumbria press release:
This opportunity to use JWST was the first time we have ever been able to make such detailed near-infrared observations of Saturn's aurora and upper atmosphere. The results came as a complete surprise. We anticipated seeing emissions in broad bands at the various levels. Instead, we've seen fine-scaled patterns of beads and stars that, despite being separated by huge distances in altitude, may somehow be interconnected – and may also be linked to the famous hexagon deeper in Saturn's clouds. These features were completely unexpected and, at present, are completely unexplained.
The international team of researchers, comprising 23 scientists from institutions across the UK, US, and France, made the discoveries during a continuous 10-hour observation period on 29 November 2024, as Saturn rotated beneath JWST's view. "Saturn's upper atmosphere has proven incredibly difficult to study with missions and telescope facilities to date due to the extremely weak emissions from this region," said Stallard. "JWST's incredible sensitivity has revolutionised our ability to observe these atmospheric layers, revealing structures that are completely unlike anything we've seen before on any planet."
JWST's NIRSpec instrument allowed the team to simultaneously observe H₃⁺ ions from the ionosphere 1,100 km (683.5 mi) above Saturn's "surface," and methane molecules in the stratosphere beneath. In the ionosphere, they observed dark, bead-like features embedded in Saturn's polar aurorae that remained stable over hours but drifted over longer periods. Beneath that, at an altitude of 500 km (310 mi), they spotted an asymmetric star-shaped feature (with four arms instead of six) extending from the north pole towards the equator. These patterns overlaid each other at different levels, with the beads lying on top of the lopsided star pattern.
This suggests that the processes driving these processes may extend through Saturn's atmosphere and deep into its interior. Both features could have significant implications for understanding atmospheric dynamics on gas giant planets. Said Professor Stallard:
We think that the dark beads may result from complex interactions between Saturn's magnetosphere and its rotating atmosphere, potentially providing new insights into the energy exchange that drives Saturn's aurora. The asymmetric star pattern suggests previously unknown atmospheric processes operating in Saturn's stratosphere, possibly linked to the hexagonal storm pattern observed deeper in Saturn's atmosphere. Tantalizingly, the darkest beads in the ionosphere appear to line up with the strongest star-arm in the stratosphere, but it's not clear at this point whether they are actually linked or whether it's just a coincidence.
While these features hint at mysterious processes at work, more work is needed to explain the underlying causes. In the near future, the team hopes that additional time will be granted with the JWST for follow-up observations. The structures observed may change dramatically since Saturn is currently at its equinox and the northern hemisphere is about to shift into autumn. "Since neither atmospheric layer can be observed using ground-based telescopes, the need for JWST follow-up observations during this key time of seasonal change on Saturn is pressing," Stallard added.
Hubble Space Telescope view of the colossal polar cloud on Mars (Credit : NASA)
Mars, often called the Red Planet due to its rusty iron oxide covered surface, is Earth's smaller, colder neighbour. Orbiting the Sun at an average distance of 228 million kilometres, Mars shares remarkable similarities with Earth; a 24.6 hour day, polar ice caps, seasons driven by a 25.2 degree axial tilt, and evidence of ancient rivers and lakes that once flowed across its surface. Yet Mars today is a harsh world with a thin atmosphere just 1% the density of Earth's, average temperatures of -63°C, and no liquid water on its surface. It has an incredibly thin atmosphere composed primarily of carbon dioxide (95%) which is so tenuous that liquid water cannot exist on the surface, yet it’s still thick enough to generate global dust storms.
Mars, the red planet
(Credit : Kevin Gill)
Despite its thin atmosphere, Mars experiences dramatic seasonal weather patterns driven by its axial tilt. A team of researchers has recently been studying one of these seasonal events, the north polar vortex, a massive atmospheric circulation system similar to Earth's polar vortex. They found that temperatures inside the vortex are 40°C colder than outside, creating conditions unlike anywhere else on the planet. A polar vortex is a large scale circular wind pattern that forms in the upper atmosphere around a planet's polar regions. It’s a little like a massive spinning column of cold air that acts like an atmospheric fence, trapping cold air over the pole.
The polar vortex forms as a consequence of the Martian seasons, which occur because the planet's axis is tilted at 25.2 degrees. This is very similar to Earth's 23.5 degree tilt and just like on Earth, the end of northern summer sees an atmospheric vortex develop over Mars's north pole and last through to the spring. What makes this discovery particularly interesting is the chemistry inside the vortex. Ordinarily, ozone on Mars is destroyed by reacting with molecules produced when ultraviolet sunlight breaks down water vapour.
A strong tropospheric polar vortex configuration in November 2013
(Credit : National Oceanic and Atmospheric Administration)
Instead, during Martian winters and at such cold temperatures, what little water vapour exists freezes out completely and deposits onto the ice cap. Meanwhile, the polar region descends into months of total darkness. Without water vapour and without sunlight to drive the usual destructive chemical reactions, ozone can build up to surprising levels.
"Ozone is a very important gas on Mars, it’s a very reactive form of oxygen and tells us how fast chemistry is happening in the atmosphere. By understanding how much ozone there is and how variable it is, we know more about how the atmosphere changed over time, and even whether Mars once had a protective ozone layer like on Earth.”
- Dr. Kevin Olsen of the University of Oxford
It’s remarkable the team were able to make such progress in their study. The winters at the north pole of Mars experience total darkness so it’s quite difficult to study the vortex. Instead the team had to use two different spacecraft working together. One of them was the European Space Agency's ExoMars Trace Gas Orbiter, which studies the Martian atmosphere by observing sunlight passing through the planet's limb. But this technique alone doesn't work so they combed this data with temperature measurements from NASA's Mars Climate Sounder aboard the Mars Reconnaissance Orbiter.
This artist's concept of NASA's Mars Reconnaissance Orbiter features the spacecraft's main bus facing down, toward the red planet
(Credit : NASA/JPL/Corby Waste)
They team were able to look for a sudden drop in temperature which would be the telltale signs of a vortex. Studying the vortex has directly helped to understand more about the ozone levels on Mars and therefore whether the planet once had an ozone layer that protected the surface from ultraviolet radiation. If so, it increases the chance that life could perhaps once have existed on Mars billions of years ago.
Moon landing conspiracy theories are reignited online as NASA reveals details for the Artemis II mission – as one sceptic jokes 'I hope they have better CGI this time'
Moon landing conspiracy theories are reignited online as NASA reveals details for the Artemis II mission – as one sceptic jokes 'I hope they have better CGI this time'
The focus of many commenters' ire is the fact that it has been over 50 years since NASA launched a mission to the moon.
Given that Artemis II won't actually land on the moon, some conspiracy theorists have been left unsure why NASA seemingly can't replicate a feat first achieved in 1969.
While this has boosted long-debunked claims that the original moon landings were faked, some commenters have gone even further.
The wild theories posted online claim that humans have never even been to space, while others even claim that space itself is somehow 'fake'.
Taking to X, one sceptically-minded commenter joked: 'I hope they have better CGI'.
As NASA unveils the details for the Artemis II mission, lunar conspiracy theories have reignited and spread like wildfire on social media. Pictured: Buzz Aldrin on the moon in 1969
As early as February next year, NASA will launch the Artemis II mission and send four astronauts (pictured from left: Christina Koch, Victor Glover, Reid Wiseman, and Jeremy Hansen) on a 10-day trip around the moon in the first crewed lunar mission in over 50 years
However, on social media, NASA's announcement of the mission's details ignited a wave of conspiracy theories that spread like wildfire over X, formerly Twitter
One internet-dwelling conspiracy theorist joked that NASA's rocket launches were as fake as 'pro wrestling in zero gravity'
Early next year, four NASA astronauts will launch from Earth aboard an Orion spaceship powered by the powerful Space Launch System (SLS) rocket.
Over 10 days, the crew will travel 5,700 miles (9,200 km) past the moon, testing the onboard systems and gathering data on their bodies' reactions, before returning to Earth.
During this time, they will reach the furthest point from Earth ever travelled to by a human and become the first people to travel to the moon in over 50 years.
On X, one commenter wrote: 'I believe that the American missions of the 1950s are fake unless modern humans land on the moon. It's been over 70 years and we still can't go to the moon?'
'So NASA are going to the moon again but they are not actually landing what a load of fake BS,' another chimed in.
One commenter complained that this was 'one of the reasons I don't believe that humans have ever been to the moon.'
The Artemis II mission is not intended to land on the moon, but rather to test out the spacecraft and systems that will be used for the first crewed landing in the Artemis III mission
However, the fact that Artemis II will not feature a lunar landing left some commenters confused as to why the space agency seemingly cannot replicate a feat it first completed in 1969
One commenter complained that they could no longer believe in the reality of anything NASA does or claims to do
NASA's Artemis Mission Timeline
Artemis I
- Uncrewed lunar flight test
- Launched November, 2022
Artemis II
- Crewed Lunar Flyby
- Launch planned for April, 2026
Artemis III
- Crewed Surface Landing
- Launch planned for mid-2027
Artemis IV
- Building First Lunar Space Station
- Launch targeting September 2028
Another vented: 'It befuddles me how people can still believe NASA after 60+ years of fake moon landings and a bunch of excuses since.'
And one commenter even joked: 'Watching these launches is like watching pro wrestling in zero gravity. Everyone knows it's fake, but the show must go on.'
But for those already deeply involved in the world of NASA conspiracy theories, this announcement of the Artemis II mission triggered a flurry of bizarre claims.
Most strangely of all, the lunar mission seemed to prompt many commenters to deny the existence of space itself.
In a wild rant, one commenter wrote: 'The first task of any elected President is to sign over the budget for NASA, the National Academy of Space Actors. Money plays a role but the ultimate reason for fake Space is to hide God & dismiss Creation with Pseudoscience.'
'NASA spends $60M per day of tax payers money to make fake videos about them floating in space,' another claimed.
Another added: 'Space is fake. We never went to the moon. The first astronauts were diving actors. NASA in Houston is a movie set.'
However, like so many online conspiracy theories, many commenters had one big reason for doubting the existence of the space missions: The Flat Earth theory.
Another conspiracy theorist claimed that the lack of a lunar landing in Artemis II was one of the reasons they 'don't believe that humans have ever been to the moon'
The news of the mission pushed some conspiracy theorists into wild rants about secret societies, flat Earth, elaborate cover-ups and the moon landings
One particularly frustrated conspiracy theorist wrote: 'Earth isn't a spinning space ball; it's a fixed plane covered by a firmament they've desperately tried to hide with fake space missions and NASA's $60 million a day budget scam.'
They continued to rant: 'The moon landing? Filmed on a soundstage by Freemason puppets under Operation Mockingbird control.'
While another complained about 'the lying NASA who lied to the world about the Earth being flat.'
Although there is obviously no basis in reality for any of these claims, the number of people who believe in anti-scientific conspiracy theories remains extremely high.
Studies have found that between 10 and 12 per cent of Americans believe that the Moon landings were faked.
Interestingly, while rates of support for other conspiracy theories have remained stable, NASA conspiracies have become more popular.
According to one study from the University of Miami, the number of Americans who believe the moon landing was faked almost doubled from six per cent to 10 per cent between June 2020 and May 2021.
How do we know the moon landings weren't fake?
Physical evidence
When the Apollo 11 mission landed on the moon, they did more than jump about and take a few photos.
The crew placed a retroreflector array on the lunar surface consisting of 100 glass prisms which act like a giant mirror.
This allows observatories on the Earth to bounce lasers off the moon and accurately determine its exact distance from Earth.
Additionally, the Apollo missions brought back 382 kg (842 lbs) of rock samples from six different lunar sights.
These have been repeatedly analysed by independent scientists, showing that they have a unique chemical composition which is different to the rocks on Earth.
Observations at the time
In addition to this evidence, we also have contemporary observations which show the exact moment the lander touched down on the moon.
At the Jodrell Bank radio telescope in Cheshire, Sir Bernard Lovell and his team accurately recorded the precise path of the lunar lander.
These recordings are so precise that you can even see the precise moment that Neil Armstrong took manual control of the lander.
This gives us fantastic evidence from the time that shows the lander touching down on the moon.
The weakness of counter arguments
Another key reason we know the moon landings are real is the lack of any evidence that suggests they are faked.
One of the most common conspiracy claims is that the shadows in a photo taken by Neil Armstrong are not parallel.
But even on Earth, it is easy to observe situations where two parallel lines do not appear parallel whenever a low sun is shining over uneven ground.
People also question how the flag planted on the moon could be waving as if in the wind.
However, a closer examination of the flag in the photo clearly shows that there is a metal pole keeping it held up.
The flag is crumpled after being stored for four days en route and remains wrinkled precisely because there is no wind and little gravity on the moon.
Finally, to keep a fake moon landing secret and prevent any evidence from escaping would require the complicity of thousands of scientists, officials, camera crews, and set builders for over five decades.
The idea that this is possible for any government on Earth is simply much less plausible than the idea that a rocket carried a crew to the moon.
NASA’s Jet Propulsion Laboratory (JPL) has announced a new record set by the Psyche mission. It successfully sent a laser signal to Earth from a distance of 350 million kilometers. That’s more than the distance between our planet and Mars.
Infrared photograph showing the moment when Table Mountain Observatory transmits a laser signal to the Psyche spacecraft. Source: NASA/JPL-Caltech
The Psyche mission was launched in 2023 with the aim of studying Psyche, a 220-kilometer metal asteroid that, according to one hypothesis, may be a fragment of the core of a dead protoplanet. The spacecraft is scheduled to reach it in 2029.
In addition to studying the asteroid, Psyche also has the function of a “tester.” NASA specialists installed an experimental optical communication system on board. Its main advantage over traditional radio communication is its much higher (10 to 100 times) data transfer rate. Lasers can transmit complex scientific information, as well as high-definition images and videos. This is especially important for the next stage of space exploration, when humans will travel to the Moon and Mars and will need to quickly send large amounts of data back to Earth.
The first experiment took place on December 11, 2023, when Psyche was 31 million kilometers from Earth. The spacecraft sent a 15-second video of a cat to Earth (it was preloaded before launch). The data transfer rate was 267 Mbit/s. This is a couple of orders of magnitude faster than when using radio communication.
JPL specialists repeated the experiment several times in the future. As Psyche moved away from Earth, the data transfer rate gradually decreased (for example, when the spacecraft was 226 million km away, it was 25 Mbit/s), but it was still much faster than traditional radio communications. In addition, engineers tested another innovation in the form of duplicate data. The spacecraft successfully demonstrated that it can simultaneously use both radio and laser communication systems to communicate with Earth. The radio data was transmitted to NASA’s Deep Space Network, and the laser data was received by the Hale telescope at Palomar Observatory. The photons captured by it were then directed to a highly efficient detector array, where the information encoded in them was processed.
Almost two years after the start, JPL specialists conducted the 65th and final experiment. During the mission, Psyche once again broke the distance record by successfully sending a signal from a distance of 350 million km. This corresponds to the radius of the inner boundary of the asteroid belt.
According to scientists, the experiments successfully demonstrated the effectiveness of the technology. Data encoded by lasers can be reliably transmitted, received, and decoded after passing hundreds of millions of kilometers. In total, Psyche transmitted 13.6 terabits of data to Earth over the entire period. At the same time, the data transfer rate turned out to be even higher than expected. All this means that the technology has great prospects, especially when space agencies face the challenge of transmitting large amounts of high-resolution images and data from the Moon and Mars.
During the total lunar eclipse on September 7, 2025, astrophotographers Gerald Rhemann and Michael Jäger took unique photographs of the interstellar comet 3I/ATLAS. Their observations revealed a surprising fact: the comet that visited our Solar System glowed green. This discovery put scientists in front of a new exciting puzzle, because previous data on the chemical composition of this comet doesn’t explain this phenomenon.
Illustration of comet 3I/ATLAS with a green tail, generated by Copilot AI
For comets in our Solar System, green glow is a common phenomenon. It occurs when solar heat warms the comet, causing the ice to sublimate into gas and form an atmosphere (comet). Molecules in this gas, particularly dicarbon (C2), begin to glow under the influence of solar radiation, creating a characteristic green glow. However, this is not the case for the interstellar comet 3I/ATLAS.
Original photo of 3I/ATLAS in green. Photo: Michael Jäger/Gerald Rhemann
Previous studies, including those conducted with JWST, have shown that this comet has a very unusual chemical composition. It was found to contain elevated levels of carbon dioxide, as well as traces of nickel and cyanogen (CN). However, no dicarbon (C2) molecules, which are traditionally responsible for the green color, were found. This has left scientists at a dead end.
The mystery becomes even more complicated when you consider the conclusions of astronomer Luis Salazar Manzano from the University of Michigan. His team finds that Comet 3I/ATLAS shows a lot of “carbon chain depletion” — meaning it has significantly fewer C2 and C3 molecules than any other comet we know of. The early detection of cyanogen only reinforces this strange chemical anomaly.
This means that either dicarbon is present but has not yet been detected due to unique conditions, or some other, as yet unknown molecule is responsible for the green glow. Both options make this interstellar traveler an extremely valuable object for study.
Scientists hope to find answers to these questions in the near future. According to forecasts, comet 3I/ATLAS will come closest to Earth in December 2025. This will provide astronomers with a unique opportunity to conduct a series of detailed observations and finally unravel the mystery of its green glow. Each such discovery expands our understanding of what celestial bodies far beyond our Solar System are made of and how they are formed.
White UFO Has Aura Around It, Hovers In Place 30 min! Arizona Sept 10, 2025, UAP Paranormal sighting News.
White UFO Has Aura Around It, Hovers In Place 30 min! Arizona Sept 10, 2025, UAP Paranormal sighting News.
Date of sighting: Sept 10, 2025
Location of sighting: Oak Creek Canyon, Arizona, USA
Source: NUFORC
This is amazing and it's similar to what I recorded in Utah last week and what was recorded in Idaho the same day. This UFO has a detail that is just 100% proof of it being alien tech...it has an aura around it. Area 51 scientist Bob Lazar once said UFOs have auras around them not to confuse photos and make them blurry, but because it's a byproduct of the UFOs propulsion system.
Scott C. Waring - UFO Sightings Daily
Eyewitness states:
I thought it was a child's balloon at first but the wind was blowing and this thing never moved. It looked like a white balloon at first. The wind was blowing and this object never moved. Duration lasted about 30 minutes.
Moon zig-zags in weird space eclipse! NASA blames a ‘glitch’ — Really?
Moon zig-zags in weird space eclipse! NASA blames a ‘glitch’ — Really?
Something strange just happened in orbit. On Sept. 21st, NOAA’s CCOR-1 coronagraph onboard the GOES-19 satellite recorded what appears to be the first natural solar eclipse ever observed from space.
In the clip, the Moon doesn’t glide smoothly across the Sun as expected — instead, it zig-zags in a bizarre path, almost as if something was tugging at it.
Coincidence? According to NASA: it could be linked to a “yaw flip maneuver” scheduled for the next day, but the timing has sparked questions.
Even weirder: during the eclipse, the Moon only covered the Sun’s bright disk, yet the entire glowing corona suddenly vanished and everything went just black.
But NASA explained it away as a “quirk of image processing,” where the software subtracted too much light and erased the corona. But for many skywatchers, it looks like more than just a computer glitch.
NASA, as always, gives an explanation that raises more questions than answers. The bizarre event suggests that something, whether natural or engineered, interfered.
Are they covering up the reality of what’s out there?
See the extraordinary event for yourself in the clip below:
Now, researchers think this strange signal, dubbed GW190521, could have arrived from a parallel universe.
In a pre-print paper, a team led by Dr Qi Lai of the University of Chinese Academy of Sciences argues that GW190521 could be an 'echo' of a wormhole collapsing.
Since the wormhole would only be open for a very short time, this would explain why GW190521 seems to cut off abruptly.
Although their modelling suggests this scenario isn't very likely, Dr Lai says evidence cannot rule out that the signal travelled to Earth from another universe.
Researchers from the Chinese Academy of Sciences say that the strange signal might have travelled to Earth from another universe (stock image)
The signal, known as GW190521, was less than 10 milliseconds in length and lacked the normal rising signal associated with two black holes spiralling towards each other
The researchers modelled what this wormhole signal would look like (illustrated) and compared it to the real data from GW190521. They found that the data could not rule out a wormhole as the explanation
According to Einstein's theory of relativity, objects with mass stretch and pull the fabric of spacetime, like weights placed on the surface of a trampoline.
One important consequence of this is that collisions between very massive objects create ripples which spread throughout the fabric of reality over enormous distances.
That gives the signal produced by merging binary black holes a rising chirp-like pattern, which is a telltale sign of a black hole collision.
So far, scientists have used gravitational waves to detect about 300 collisions between binary black holes, each producing the same drawn-out chirp.
What makes GW190521 so unusual is that it is missing the rising part of the signal produced when the black holes spiral inwards.
Given that the resulting object was roughly 141 times the mass of the sun, scientists should have been able to detect this part of the signal if it occurred.
Currently, the best explanation for this unusual signal is a chance encounter between two black holes that smashed directly into one another without spiralling.
In 2019, scientists detected a burst of gravitational waves, ripples in spacetime usually caused by colliding black holes, that didn't match any other signal previously recorded. Pictured: artist's impression of two black holes colliding
If the collision between two black holes briefly created a wormhole, the echo of their collision would pass through the throat of the wormhole into our universe, where it would appear as a brief burst of gravitational waves
What are gravitational waves?
Gravitational waves are ripples in the fabric of space-time which are caused by the collision of massive, dense objects.
When objects like black holes or neutron stars violently accelerate in collisions, they squeeze and stretch the space in their path.
This creates waves which spread through spacetime at the speed of light over vast distances.
Scientists use very long laser beams to measure these very slight disturbances in the fabric of space.
However, Dr Lai says that a wormhole in another universe is also a plausible explanation.
In their paper, Dr Lai and his co-authors write: 'The wormhole represents such an object connecting either two separate universes or two distant regions in a single universe through a throat.'
If the merger of two black holes produced a short-lived wormhole like this, we might be able to hear a brief snippet of the chirp echoing into our own universe.
When the wormhole snaps shut, the signal would be cut off to leave a very brief burst of gravitational waves.
Dr Lai adds: 'The ringdown signal after BBHs (binary black holes) merged in another universe can pass through the throat of a wormhole and be detected in our universe as a short-duration echo pulse.'
Dr Lai and his colleagues created a mathematical model of what this wormhole signal would look like and compared it to the data from the real GW190521 signal captured by the LIGO and Virgo gravitational wave detectors.
The researchers also created a model for a sudden collision in our own universe and compared the results.
They found that the standard collision model did fit the data better, but only just.
Currently, the best explanation for GW190521 (illustrated) is that a chance encounter between two black holes that collided suddenly without spiralling around each other. But a wormhole is still a viable explanation
That means the wormhole model is still a viable explanation for the GW190521 collision.
In their paper, the researchers write that the preference for the standard collision was 'not significant enough to rule out the possibility that the echo-for-wormhole model is a viable hypothesis for the GW190521 event.'
If true, this would not only prove that wormholes exist but also give scientists a powerful new tool to study them.
That would allow scientists their first-ever glimpse into a universe beyond our own.
LIGO is made up of two observatories that detect gravitational waves by splitting a laser beam and sending it down several mile long tunnels before merging the light waves together again.
A passing gravitational wave changes the shape of space by a tiny amount, and the LIGO was built with the ability to measure a change in distance just one-ten-thousandth the width of a proton.
However, this sensitivity means any amount of noise, even people running at the site, or raindrops, can be detected.
The LIGO detectors are interferometers that shine a laser through a vacuum down two arms in the shape of an L that are each 2.5 miles (four kilometers) in length.
The light from the laser bounces back and forth between mirrors on each end of the L, and scientists measure the length of both arms using the light.
If there's a disturbance in space-time, such as a gravitational wave, the time the light takes to travel the distance will be slightly different in each arm making one arm look longer than the other.
LIGO (pictured) is made up of two observatories that detect gravitational waves by splitting a laser beam and sending it down several mile (kilometer) long tunnels before merging the light waves together again
Ligo scientists measure the interference in the two beams of light when they come back to meet, which reveals information on the space-time disturbance.
The ensure the results are accurate, LIGO uses two observatories, 1,870 miles (3,000 kilometers) apart, which operate synchronously, each double-checking the other's observations.
The noise at each detector should be completely uncorrelated, meaning a noise like a storm nearby one detector doesn't show up as noise in the other.
Some of the sources of 'noise' the team say they contend with include: 'a constant 'hiss' from photons arriving like raindrops at our light detectors; rumbles from seismic noise like earthquakes and the oceans pounding on the Earth's crust; strong winds shaking the buildings enough to affect our detectors.'
However, if a gravitational wave is found, it should create a similar signal in both instruments nearly simultaneously.
Beste bezoeker, Heb je zelf al ooit een vreemde waarneming gedaan, laat dit dan even weten via email aan Frederick Delaere opwww.ufomeldpunt.be. Deze onderzoekers behandelen jouw melding in volledige anonimiteit en met alle respect voor jouw privacy. Ze zijn kritisch, objectief maar open minded aangelegd en zullen jou steeds een verklaring geven voor jouw waarneming! DUS AARZEL NIET, ALS JE EEN ANTWOORD OP JOUW VRAGEN WENST, CONTACTEER FREDERICK. BIJ VOORBAAT DANK...
Druk op onderstaande knop om je bestand , jouw artikel naar mij te verzenden. INDIEN HET DE MOEITE WAARD IS, PLAATS IK HET OP DE BLOG ONDER DIVERSEN MET JOUW NAAM...
Druk op onderstaande knop om een berichtje achter te laten in mijn gastenboek
Alvast bedankt voor al jouw bezoekjes en jouw reacties. Nog een prettige dag verder!!!
Over mijzelf
Ik ben Pieter, en gebruik soms ook wel de schuilnaam Peter2011.
Ik ben een man en woon in Linter (België) en mijn beroep is Ik ben op rust..
Ik ben geboren op 18/10/1950 en ben nu dus 75 jaar jong.
Mijn hobby's zijn: Ufologie en andere esoterische onderwerpen.
Op deze blog vind je onder artikels, werk van mezelf. Mijn dank gaat ook naar André, Ingrid, Oliver, Paul, Vincent, Georges Filer en MUFON voor de bijdragen voor de verschillende categorieën...
Veel leesplezier en geef je mening over deze blog.